Homologación y/o Recategorización del Parque Natural Regional Cerro Banderas – Ojo Blanco

CORPORACIÓN AUTONOMA REGIONAL DEL ALTO MAGDALENA – CAM CONSORCIO PARQUES NATURALES REGIONALES 2018

Corporación Autónoma Regional del Alto Magdalena - CAM

Carlos Alberto Cuellar Medina Director General

Juan Carlos Ortiz Cuellar Subdirector de Gestión Ambiental CRC

• Equipo Técnico CAM:

Diana Marcela Bermeo Parra Coordinadora Áreas Protegidas

William Enrique Pinto Galeano Profesional oficina OPL

Cesar Augusto Hernández Profesional PNR Cerro Banderas – Ojo Blanco

Consorcio Parques Naturales Regionales 2018

Leandro Vargas González Ingeniero Agrícola Especialista en Ingeniería Ambiental Santiago Ángel Botero Médico Veterinario Zootecnista Magister en Sistemas de Producción Agropecuaria

TABLA DE CONTENIDO

12				JCCIÓN	INTRODU	1.
14				DENTES	ANTECE	2.
O LA CATEGORÍA 14 LES NATURALES.			7	L AÑO 2007	E PNR EN EI	D
16			ATIVO	TO NORMA	CONTEX	3.
19			NAL	TO REGION	CONTEX	4.
22			ESTO	IO PROPUI	POLÍGON	5.
PROPUESTO	POLÍGONO	ŗ	DEL	CIÓN	1.DELIMITA(22	5.
POLÍGONO	DEL	CAMBIO	(DE	2.ÁREAS 23	5.
24		Α	OGRÁFIC	ACIÓN GEO	LOCALIZ	1. 6.
25		EREDAL.	CIPAL Y V	IÓN MUNIC	IDISTRIBUC	6.
CULTURAL 27	DECONÓMICA Y	A, SOCIO	N BIOFÍSIC	ERIZACIÓN	CARACT	7.
27						7.
Precipitación					.1 28	
TEMPERATURA	••••••	•••••••	•••••••••••	••••••	.2 32	7.
HUMEDAD RELATIVA					35	
IFICACIÓN C LIMÁTICA	ERIZACIÓN Y C LASII	C ARACTI				7.
BALANCE HÍDRICO					38 '.5 41	7.
45 49				,	2GEOLOGÍA	
ICA DEPARTAMENTAL	CACIÓN HIDROLÓGI	ZONIFI			8.1 49	7.3
OGRÁFICA MUNICIPAL					51	
	D=====					
IONES HIDROLÓGICAS					56	7.4
ERAS – OJO BLANCO	S DE C ERRO B ANDE	S HÍDRICAS	FUENTE		^{1.} 2 57	7.4

7.4.3	. PARAMETROS PARA EL	L POLIGONO PR	OPUESTO EN CBOB
7.4.4			ÍNDICES
67			
7.4.5	INDICADOR	ES DE PRESIÓN	POR USO DEL AGUA
7.5GEOMORFOLOGÍA			77
7.6APTITUD Y VOCACIÓN D	EL SUELO		78
7.7BIOGEOGRAFÍA Y ECOS			
7.8ANÁLISIS DE COBERTU			
7.9FLORA			
7.9.1		Col	MPOSICIÓN VEGETAL
84			00/0/0/1 VE0E//\E
7.9.2			FLORA ENDÉMICA
86	•	•	I LONA ENDEMIOA
7.9.3			FLORA AMENAZADA
87			
7.10			FAUNA
88			
7.10.1	Сомр	OSICIÓN Y RIQU	IEZA DE M AMÍFEROS
88			
7.10.2ESPECIES VEDAI	DAS <mark>, ENDÉMICAS O AM</mark> E	NAZADAS, CON	VALOR COMERCIAL,
CIENTÍFICO Y CULTURAL DE MAM	ÍFEROS		90
7.10.3		COMPOSICIÓN	Y RIQUEZA DE AVES
92			
7.10.4 ESPECIES VEDAI	DAS, ENDÉMICAS O AME	NAZADAS, CON	VALOR COMERCIAL,
CIENTÍFICO Y CULTURAL, EN AVE	S		94
7.10.5	Composición y	RIQUEZA DE A	NFIBIOS Y REPTILES
96			
7.10.6 ESPECIES VEDAI	DAS, ENDÉMICAS O AME	NAZADAS, CON	VALOR COMERCIAL,
CIENTÍFICO Y CULTURAL, EN ANF			
7.11CARACTERIZACIÓN	SOCIAL, ECO	NÓMICA '	Y CULTURAL
101	·		
7.11.1			Población
101			
7.11.1.1		TAMAÑ	O DE LA POBLACIÓN
101			
7.11.1.2		E sa	RUCTURA FAMILIAR
103			
7.11.1.3			Grupos Étnicos
103			
7.12ANÁLISIS	DE		ACTORES
104			
7.13INFRAESTRUCTURA	Υ 5	SERVICIOS	BÁSICOS
106			

	ITENENCIA 108	DE	LA	TIERRA
			Análisis prei	DIAL Y OCUPACIÓN
	108		D	
7.14	.2 112		PREDIOS ADQUIRIDOS PO	OR LOS MUNICIPIOS
	SACTIVIDAD			ECONÓMICA
	114			T
	. 1 116			I IPOLOGIA CAFE
7.15			TIPOLOGÍA C AÑA	PANELERA- CAFÉ
	116		T	.
	.3 117		TIPOLOGÍA CAFE	CON GANADERIA.
7.15	= = =		T IPOI	LOGÍA GANADERÍA
	118	DEALIZADAO EN	OFFICE DANIERAG	
	INVERSIONES	REALIZADAS EN	CERRO BANDERAS	OJO BLANCO
8.		PRESIONES		120
8.1	DEFORESTACIO	ΝĊ		120
9				
10				
11	MINERÍA			126
12	HIDROCARBU	ROS		128
13	CULTIVOS DE	USO ILÍCITO		130
14	OBJETIVOS D	E CONSERVACIÓN		131
14.1	IOBJETIVO	DE	CONSERVACIÓN	J 1
1	131			
	2OBJETIVO 131	DE	CONSERVACIÓN	1 2
	BOBJETIVO	DE	CONSERVACIÓN	1 3
	132		,	
	IOBJETIVO	DE	CONSERVACIÓN	1 4
15)N		133
		AD Y COMPLEMENT	ERSIDAD (REPRES	SENTATIVIDAD, 133

REGIONAL	Y	ECOSISTEMICA	CONECTIVIDAD 35	
CIÓN O CORREDORES	E CONSERVA	IDAD CON OTRAS ÁREAS		_
137			ÓGICOS	ECOLÓ
CONSERVACIÓN		DE	ESTADO 42	14
ÁLISIS DE CONTRASTE	ANA		1	15.3.1
			42	14
BIODIVERSIDAD			2	15.3.2
			43	
ECOSISTEMICOS			SERVICIOS	
_	_		45	
DE RECARGA HÍDRICA	IA DE ÁREAS I	Presen	1 45	15.4.1 14
Y REMOCIÓN DE MASA	MO EROSIÓN Y	FRENTE A FENÓMENOS CO	2 C OBERTURA VEGETAL 48	_
ISAJÍSTICO, RELICTOS	CÉNICO O PAI	CON ESPECIAL VALOR E	3Presencia de sitio	<i>15.4.3</i>
153	CULTURAL	OS DE VALOR HISTÓRICO	IEOLÓGICOS Y OTROS SI	ARQUE
155			DELIMITACION	16
160		ESTA	CATEGORIA PROPI	17
SO 165	MEN DE US	IIFICACIÓN Y DE RÉC	PROPUESTA DE ZO	18
165		NTE	ZONIFICACIÓN VIGI	18.1
		IIFICACIÓN		
USOS		DE	RÉGIMEN 70	
173		FICAS	RENCIAS BIBLIOGR	REFE
176		_OGÍA	O 1. CLIMA E HIDRO	ANEX
		PECIES DE FLORA I D BANDERAS - OJO I		
		PECIES DE FAUNA I		

LISTA DE TABLAS

Tabla 1. Área inicial y participación Municipal dentro del PNR Cerro Banderas -
OJO BLANCO14
Tabla 2. Análisis de contraste del PNR Cerro Banderas - Ojo Blanco en el año
2012
TABLA 3. ÁREAS PROTEGIDAS DEL DEPARTAMENTO DEL HUILA PARA EL AÑO 201920
TABLA 4. VEREDAS QUE COMPONEN EL POLÍGONO PROPUESTO
TABLA 5. ESTACIONES METEOROLÓGICAS EMPLEADAS PARA LA DETERMINACIÓN DEL ANÁLISIS
CLIMÁTICO DEL ÁREA DE INFLUENCIA DEL POLÍGONO PROPUESTO
TABLA 6. DISTRIBUCIÓN MEDIA DECADAL, MENSUAL Y ANUAL DE PRECIPITACIÓN DE LAS
ESTACIONES SELECCIONADAS EN EL ÁREA DE INFLUENCIA DEL POLÍGONO PROPUESTO 28
TABLA 7. DISTRIBUCIÓN MEDIA DECADAL, MENSUAL Y ANUAL DE PRECIPITACIÓN DE LAS
ESTACIONES SELECCIONADAS EN EL ÁREA DE INFLUENCIA DEL POLÍGONO PROPUESTO 32
TABLA 8. DISTRIBUCIÓN MEDIA DECADAL, MENSUAL Y ANUAL DE HUMEDAD RELATIVA DE LAS
, ,
ESTACIONES SELECCIONADAS EN EL ÁREA DE INFLUENCIA DEL POLÍGONO PROPUESTO35
TABLA 9. CARACTERIZACIÓN CLIMÁTICA POR EL MÉTODO DE CALDAS – LANG
TABLA 10. REPRESENTATIVIDAD DE LOS TIPOS CLIMÁTICOS POR EL MÉTODO DE CALDAS – LANG
TABLA 11. PRECIPITACIÓN DECADAL ESTACIÓN LA MINA (PROBABILIDAD DEL 50% Y 80%)41
TABLA 11. PRECIPITACIÓN DECADAL ESTACIÓN EL WILLIAM (PROBABILIDAD DEL 50% Y 80%).42
· · · · · · · · · · · · · · · · · · ·
TABLA 13. PRECIPITACIÓN DECADAL ESTACIÓN YARUMAL (PROBABILIDAD DEL 50% Y 80%) 42
TABLA 14. BALANCE HIDRO CLIMÁTICO A NIVEL DECADAL ESTACIÓN SANTA MARÍA
TABLA 15. BALANCE HIDRO CLIMÁTICO A NIVEL DECADAL ESTACIÓN SAN RAFAEL
TABLA 16. BALANCE HIDRO CLIMÁTICO A NIVEL DECADAL ESTACIÓN TERPEYA COLOMBIA44
TABLA 17. SUBCUENCAS Y/O MICROCUENCAS CIRCUNSCRITAS EN CERRO BANDERAS - OJO
BLANCO51
TABLA 18. COMPOSICIÓN HÍDRICA DEL MUNICIPIO DE ÍQUIRA (HUILA)51
TABLA 19. COMPOSICIÓN HÍDRICA DEL MUNICIPIO DE TERUEL (HUILA)52
TABLA 20. COMPOSICIÓN HÍDRICA DEL MUNICIPIO DE PALERMO (HUILA)54
TABLA 21. COMPOSICIÓN HÍDRICA DEL MUNICIPIO DE SANTA MARÍA (HUILA)55
Tabla 22. Valores de oferta hídrica por subzona hidrográfica
TABLA 23. ÁREA Y CAUDAL DE LAS SUBCUENCAS QUE CONFORMAN LA SZH 2105 - RIO PÁEZ.
58
TABLA 24. ÁREA Y CAUDAL DE LAS SUBCUENCAS QUE CONFORMAN LA SZH 2108 - RIO
YAGUARÁ Y OTROS59
TABLA 25. ÁREA Y CAUDAL DE LAS SUBCUENCAS QUE CONFORMAN LA SZH 2108 - RIO BACHE.
61
TABLA 26. ÁREA Y CAUDAL DE LAS SUBCUENCAS DENTRO DEL POLÍGONO PROPUESTO PARA
CERRO BANDERAS – OJO BLANCO65
Tabla 27. Valores de rendimiento hídrico, oferta hídrica disponible y demanda
HÍDRICA POR SUBCUENCA DEL POLÍGONO PROPUESTO PARA CERRO BANDERAS — OJO
BLANCO
TABLA 28. CATEGORÍAS PARA EL ÍNDICE DE ARIDEZ (IA)
TABLA 29. ÍNDICE DE ARIDEZ (IA) SOBRE LAS SUBCUENCAS Y/O MICROCUENCAS DEL POLÍGONO
PROPLIESTO PARA CERRO BANDERAS – OJO BI ANCO

Tabla 30. Rangos y categorías del índice de uso del agua (IUA)	72
TABLA 31. ÍNDICE DE USO DEL AGUA (IUA) SOBRE LAS SUBCUENCAS Y/O MICROCUENCAS	DEL
POLÍGONO PROPUESTO PARA CERRO BANDERAS – OJO BLANCO	
TABLA 32. COBERTURA DE LA TIERRA EN EL POLÍGONO PROPUESTO.	82
Tabla 33. Especies de flora endémicas de Colombia presentes en el polígio	
PROPUESTO PARA CERRO BANDERAS OJO BLANCO, DEPARTAMENTO DEL HUILA	86
TABLA 34. ESPECIES DE FLORA CON ALGUNA CATEGORÍA DE AMENAZA PRESENTES EN	! EL
POLÍGONO PROPUESTO PARA CERRO BANDERAS OJO BLANCO, DEPARTAMENTO DEL HU	ILA.
	87
TABLA 35. LISTADO DE ESPECIES AMENAZADAS O VULNERABLES CON OCURRENCIA EN	
POLÍGONO PROPUESTO PARA CERRO BANDERAS OJO BLANCO	91
TABLA 36. LISTADO DE ESPECIES DE MAMÍFEROS ENDÉMICOS DE COLOMBIA PRESENTES	
CERRO BANDERAS OJO BLANCO	92
Tabla 37. Listado de especies de aves amenazadas con ocurrencia en el polígo	
PROPUESTO PARA CERRO BANDERAS OJO BLANCO	95
Tabla 38. Listado de especies de Aves endémicas y Casi endémicas del polígo	
PROPUESTO PARA CERRO BANDERAS OJO BLANCO	
TABLA 39. LISTADO DE ESPECIES DE ANFIBIOS AMENAZADAS CON OCURRENCIA EN EL POLÍGICA	
PROPUESTO PARA CERRO BANDERAS OJO BLANCO	
TABLA 40. ESPECIES DE ANFIBIOS ENDÉMICAS PRESENTES EN EL POLÍGONO PROPUESTO PA	
CERRO BANDERAS OJO BLANCO, DEPARTAMENTO DEL HUILA	
TABLA 41. POBLACIÓN DE LOS MUNICIPIOS SOBRE LOS CUALES TIENE JURISDICCIÓN EL ÁI	
PROTEGIDA	
Tabla 42. Población proyectada al año 2020 en los municipios sobre los cua	
TIENE JURISDICCIÓN EL ÁREA PROTEGIDA	
TABLA 43. DISTRIBUCIÓN DE LA POBLACIÓN POR TIPO DE VIVIENDA EN EL ENTORNO REGIO	
TABLE TO BIOTALDOGION DE LATA OBLITACIONA ON THE DE VINICIADA EN LE LINFORMO ALCONO	
TABLA 44. DISTRIBUCIÓN DE LAS VIVIENDAS EN EL ENTORNO REGIONAL POR ESTRATO SOC	
TABLA 45. DISPONIBILIDAD DE SERVICIOS PÚBLICOS EN VIVIENDAS DEL ENTORNO REGIONAL.	
TABLA 46. INSTITUCIONES EDUCATIVAS OFICIALES Y SEDES POR MUNICIPIOS DEL ÁI	
PROTEGIDA	
TABLA 47. NÚMERO DE PREDIOS EN LA ZONA DE ESTUDIO SEGÚN EL IGAC	
TABLA 48. PREDIOS BALDÍOS Y PNN NEVADO DEL HUILA	
TABLA 49. OCUPACIÓN DEL POLÍGONO PROPUESTO	
TABLA 50. PREDIOS ADQUIRIDOS POR LOS MUNICIPIOS DE JURISDICCIÓN DE LAS VEREI	
DENTRO DEL POLÍGONO PROPUESTO	
TABLA 51. PRODUCCIÓN AGRÍCOLA EN EL ÁREA DE INCIDENCIA DEL POLÍGONO PROPUESTO	
TABLA 51. PRODUCCIÓN AGRÍCOLA EN LOS CUATRO MUNICIPIOS CON JURISDICCIÓN DEL ÁI	
PROTEGIDA	
TABLA 53. INVENTARIO DE ESPECIES PECUARIAS EN LOS CUATRO MUNICIPIOS DEL ÁI	
PROTEGIDA	
TABLA 54. PRODUCCIÓN PISCÍCOLA EN LOS CUATRO MUNICIPIOS DEL ÁREA PROTEGIDA	
TABLA 54. I RODUCCION I ISCICULA EN LOS CUATRO MONICIPIOS DEL AREA PROTEGIDA	

Tabla 56. Representatividad del polígono propuesto por unidad biogeográfica en relación con el SINAP133
TABLA 57. ÍNDICES DE CONECTIVIDAD DEL PAISAJE DEL ÁREA DE ESTUDIO DE CERRO BANDERAS OJO BLANCO
TABLA 58. ANÁLISIS DE CONTRASTE DEL POLÍGONO PROPUESTO PARA CBOB EN EL AÑO 2018.
Tabla 59. Priorización de especies de fauna y flora amenazada, endémica o sombrilla143
TABLA 60. PRINCIPALES ACUEDUCTOS BENEFICIADOS DEL POLÍGONO PROPUESTO146
TABLA 61. DISTRITOS DE RIEGO DEPENDIENTES DEL POLÍGONO PROPUESTO148
TABLA 62. DISTRIBUCIÓN DEL USO DEL SUELO POR MUNICIPIO DENTRO DEL POLÍGONO PROPUESTO (HA)
TABLA 63. ÁREA DE PRODUCCIÓN AGRÍCOLA POR MUNICIPIO DENTRO DEL POLÍGONO PROPUESTO (HA)
TABLA 64. INVENTARIO PECUARIO POR MUNICIPIO DENTRO DEL POLÍGONO PROPUESTO 152
TABLA 65. LÍMITES Y COORDENADAS DEL POLÍGONO PROPUESTO
Tabla 66. Matriz de análisis y evaluación de criterios para las categorías a homologar Cerro Banderas - Ojo Blanco163
TABLA 67. PROPUESTA DE ZONIFICACIÓN DEL DRMI CERRO BANDERAS QUO BLANCO 168

LISTA DE FIGURAS

FIGURA 1. ÁREAS PROTEGIDAS DEL DEPARTAMENTO DEL HUILA	20
FIGURA 2. POLÍGONO PROPUESTO PARA CERRO BANDERAS – OJO BLANCO	22
FIGURA 3. CAMBIO DE ÁREA DEL POLÍGONO DE CBOB.	
FIGURA 4. LOCALIZACIÓN DEL POLÍGONO PROPUESTO PARA CERRO BANDERAS - OJO BLAI	
FIGURA 5. DISTRIBUCIÓN PORCENTUAL DEL NÚMERO DE VEREDAS AL INTERIOR DEL POLÍG PROPUESTO.	25
FIGURA 6. DISTRIBUCIÓN VEREDAL Y MUNICIPAL DEL POLÍGONO PROPUESTO	
FIGURA 7. PROMEDIOS DECADALES, MENSUALES MULTIANUALES DE PRECIPITACIÓN DE ESTACIÓN LA MINA.	
FIGURA 8. PROMEDIOS MENSUALES MULTIANUALES DE PRECIPITACIÓN DE LA ESTACIÓN VOLCÁN	
FIGURA 9. PROMEDIOS MENSUALES MULTIANUALES DE PRECIPITACIÓN DE LA ESTAC	CIÓN
FIGURA 10. VALORES MEDIOS DECADALES Y MENSUALES MULTIANUALES DE TEMPERATUR. LA ESTACIÓN SANTA MARÍA	A DE
FIGURA 11. VALORES MEDIOS DECADALES Y MENSUALES MULTIANUALES DE TEMPERATUR.	A DE
LA ESTACIÓN SAN RAFAEL	
FIGURA 12. VALORES MEDIOS DECADALES Y MENSUALES MULTIANUALES DE TEMPERATUR.	
LA ESTACIÓN TERPEYA COLOMBIA	
RELATIVA DE LA ESTACIÓN SANTA MARÍA	
FIGURA 14. VALORES MEDIOS DECADALES Y MENSUALES MULTIANUALES DE HUME	
RELATIVA DE LA ESTACIÓN SAN RAFAEL	
FIGURA 15. VALORES MEDIOS DECADALES Y MENSUALES MULTIANUALES DE HUME	
RELATIVA DE LA ESTACIÓN TERPEYA COLOMBIA.	37
FIGURA 16. MAPA DE CLASIFICACIÓN CLIMÁTICA.	40
FIGURA 17. BALANCE HÍDRICO CLIMÁTICO ESTACIÓN SANTA MARÍA	43
FIGURA 18. BALANCE HÍDRICO CLIMÁTICO ESTACIÓN SAN RAFAEL.	44
FIGURA 19. BALANCE HÍDRICO CLIMÁTICO TERPEYA COLOMBIA.	44
FIGURA 20. MAPA DE GEOLOGÍA.	
FIGURA 21. DIVISIÓN HIDROGRÁFICA, ÁREAS PROTEGIDAS Y HUMEDALES DEL DEPARTAME	
DEL HUILA	
FIGURA 22. SUBCUENCAS HIDROGRÁFICAS ASOCIADAS AL POLÍGONO PROPUESTO PARA CE	
Banderas – Ojo Blanco	
FIGURA 23. ÍNDICE DE ARIDEZ (IA) RÍO PÁEZ	68
FIGURA 24. ÍNDICE DE ARIDEZ (IA) RÍO YAGUARÁ	
FIGURA 25. ÍNDICE DE ARIDEZ (IA) RÍO BACHE.	70
FIGURA 26. ÍNDICE DE USO DEL AGUA (IUA) SZH 2105 – RÍO PÁEZ	
FIGURA 27. ÍNDICE DE USO DEL AGUA (IUA) SZH 2108 – RÍO YAGUARÁ	
FIGURA 28. ÍNDICE DE USO DEL AGUA (IUA) SZH 2112 – RÍO BACHE	
FIGURA 29. CAPACIDAD DE USO DE SUELO EN EL POLÍGONO PROPUESTO	
FIGURA 30. ECOSISTEMAS DEL POLÍGONO PROPUESTO PARA CBOB	
FIGURA 31. CONDICIÓN DE LAS COBERTURAS EN EL POLÍGONO PROPUESTO	83

FIGURA 32. NUMERO DE ORDENES, FAMILIAS, GENEROS Y ESPECIES DE FLORA REGISTRAD	OS
EN CERRO BANDERAS OJO BLANCO.	
FIGURA 33. RIQUEZA ESPECÍFICA DE LAS FAMILIAS MÁS REPRESENTATIVAS DE FLO	
REGISTRADAS EN CERRO BANDERAS OJO BLANCO	
FIGURA 34. NÚMERO DE ÓRDENES, FAMILIAS, GÉNEROS Y ESPECIES DE MAMÍFER	
REGISTRADOS EN EL POLÍGONO PROPUESTO PARA CERRO BANDERAS OJO BLANCO	
FIGURA 35. RIQUEZA ESPECÍFICA DE LOS ÓRDENES DE MAMÍFEROS REGISTRADOS EN	
POLÍGONO PROPUESTO PARA CERRO BANDERAS OJO BLANCO	
FIGURA 36. NÚMERO DE ÓRDENES, FAMILIAS, GÉNEROS Y ESPECIES DE AVES REGISTRADOS EL POLÍGONO PROPUESTO PARA CERRO BANDERAS OJO BLANCO	
FIGURA 37. RIQUEZA ESPECÍFICA DE LAS FAMILIAS DE AVES REGISTRADAS EN EL POLÍGO	
PROPUESTO PARA CERRO BANDERAS OJO BLANCO.	
FIGURA 38. NÚMERO DE ÓRDENES, FAMILIAS, GÉNEROS Y ESPECIES DE ANFIBIOS Y REPTIL	
REGISTRADOS EN CERRO BANDERAS OJO BLANCO, DEPARTAMENTO DEL HUILA	
FIGURA 39. DISTRIBUCIÓN DE LA RIQUEZA ESPECÍFICA DE FAMILIAS DE ANFIBIOS REGISTRAD	
EN CERRO BANDERAS OJO BLANCO, DEPARTAMENTO DEL HUILA	
FIGURA 40. DISTRIBUCIÓN DE LA RIQUEZA ESPECÍFICA DE FAMILIAS DE REPTILES REGISTRAD	
EN CERRO BANDERAS OJO BLANCO, DEPARTAMENTO DEL HUILA	. 99
FIGURA 41. COMUNIDADES INDÍGENAS EN EL ÁREA DE INFLUENCIA DEL POLÍGONO PROPUESTO	
	10
4	
FIGURA 42. FORMA DE PROPIEDAD DE LOS PREDIOS.	110
FIGURA 43. OCUPACIÓN DEL POLÍGONO PROPUESTO	
FIGURA 44. PARTICIPACIÓN DE LA INVERSIÓN EN EL ÁREA PROTEGIDA DESDE EL 2008 AL 20	
FIGURA 45. RED VIAL EN LA ZONA.	
FIGURA 46. CAMBIOS ESPERADOS EN LA TEMPERATURA PARA EL POLÍGONO PROPUESTO	
FIGURA 47. CAMBIOS ESPERADOS EN LA PRECIPITACIÓN PARA EL POLÍGONO PROPUESTO	
FIGURA 48. SOLICITUDES MINERAS EN EL POLÍGONO PROPUESTO	
FIGURA 49. ACTIVIDAD DE HIDROCARBUROS EN EL POLÍGONO PROPUESTO	
FIGURA 50. REPRESENTATIVIDAD DEL POLÍGONO PROPUESTO POR BIOMAS EN RELACIÓN	
SINAP	
FIGURA 51. BIOMAS POTENCIALES EN EL POLÍGONO PROPUESTO PARA CBOB	
FIGURA 52. ECOSISTEMA DE PÁRAMO EN LA ZONA.	
FIGURA 53. ECOSISTEMAS ESTRATÉGICOS.	
FIGURA 54. CUENCAS ABASTECEDORAS Y BOCATOMAS MUNICIPALES DEL POLÍGO	
PROPUESTO.	
FIGURA 55. VOCACIÓN DEL USO DE SUELO EN EL POLÍGONO PROPUESTO	
FIGURA 56. USO DEL SUELO DENTRO DEL ÁREA PROTEGIDA.	
FIGURA 57. DELIMITACIÓN DEL POLÍGONO PROPUESTO PARA CBOB.	
FIGURA 58. ZONIFICACIÓN VIGENTE DEL PNR CBOB.	
FIGURA 59. NIVEL DE PRIORIDAD EN CERRO BANDERAS OJO BLANCO	
FIGURA 60. PROPUESTA DE ZONIFICACIÓN DEL DRMI CERRO BANDERAS OJO BLANCO	109

1. INTRODUCCIÓN

El Consejo Directivo de la Corporación Autónoma Regional del Alto Magdalena – CAM, declaró el 27 de septiembre de 2007; el área natural Cerro Banderas - Ojo Blanco (CBOB), Como Parque Natural Regional mediante el Acuerdo 012 de 2007, el cual forma parte como zona amortiguadora del Parque Nacional Natural Nevado del Huila, localizándose en el flanco oriental de la cordillera central sobre los municipios de Íquira, Teruel, Palermo y Santa María, con una extensión 24.914 hectáreas. Desde su declaratoria como área protegida la CAM ha venido ejecutando acciones de manejo dando respuesta a la ejecución de su plan de manejo.

Según el artículo 2.2.2.1.2.4 del Decreto 1076 de 2015, que compiló el Decreto 2372 de 2010 del Sistema Nacional de Áreas Protegidas — SINAP; los Parques Naturales Regionales, solamente podrán destinarse a los usos de preservación, restauración, conocimiento y disfrute; sin embargo, para la fecha de la declaratoria los objetivos de conservación y su zonificación incluía zona de producción controlada, zona de producción intensiva, zona de restauración y zona primitiva; por lo cual la CAM emitió el Acuerdo No. 013 de 2011, en el cual ratificó la figura de Parque Natural Regional y modificó el artículo tercero del Acuerdo No. 012 de 2007, para enmarcar los objetivos de conservación en el Decreto 2372.

Debido al Decreto 2372 la CAM somete el área protegida al análisis de contraste de Parques Nacionales Naturales de Colombia (PNNC) para su registro, en el cual se obtuvieron los siguientes hallazgos: 1. Qué en general el área protegida cumple con los atributos de la biodiversidad (composición, estructura y función) por lo cual podría ser declarado como Parque Natural Regional. 2. Que a pesar de lo anterior dos indicadores específicos no están el rango exigidos para los atributos, el de proporción de unidades espaciales naturales y el de continuidad altitudinal entre unidades espaciales. 3. Qué se debe ajustar el régimen de usos del área de manera que sea compatible con la categoría de Parque Natural Regional (PNR) o en su defecto la homologación a otra

categoría de manejo, soportado mediante el respectivo acto administrativo 4. Que se debe solucionar la inconsistencia de límite con el Parque Nacional Natural Nevado del Huila. En consecuencia, con lo anterior, la Unidad de Parques estableció el siguiente requerimiento para el registro del área: "Revisión y ajuste del régimen de usos del área, de manera que sea compatible con la categoría de Parque Natural Regional o en su defecto la homologación a otra categoría de manejo, soportado mediante el respectivo acto administrativo".

El presente documento contiene la información para Homologación del área, proceso que reviste gran importancia por el aporte del área protegida en la producción y regulación hídrica de la región noroccidente del departamento del Huila; por ser un hábitat de especies endémicas, de especies bajo la categoría de amenaza en peligro de extinción; y el papel de conectividad que favorece el flujo de especies entre el Parque Nacional Natural Nevado del Huila y las partes bajas de las cuencas hidrográficas del río Páez, Yaguará y Baché, importantes afluentes de la gran cuenca del Magdalena.

El proceso de homologación hizo necesario hacer la revisión de los límites del polígono teniendo en cuenta: las áreas de cobertura natural; la conectividad con áreas como las de páramo y sus zonas de transición; la incorporación de la parte alta de las cuencas y microcuencas hidrográficas; el mejoramiento de la forma del polígono, el ajuste de los límites arcifinios, y el ajuste a los límites departamentales y del Parque Nacional Natural Nevado del Huila.

Este documento fue realizado de forma participativa, y en él se presenta la propuesta para la homologación del área protegida, teniendo en cuenta los análisis de las condiciones climáticas, hidrografía, biodiversidad, presiones, condición predial, y los servicios ecosistémicos. Toda esta información constituye los criterios que se tienen en cuenta al analizar la matriz de homologación permitiendo proponer la categoría de manejo más conveniente en las condiciones actuales del área protegida existente.

2. ANTECEDENTES

2.1 DECLARATORIA DEL ÁREA NATURAL PROTEGIDA BAJO LA CATEGORÍA DE PNR EN EL AÑO 2007.

Mediante el Acuerdo 012 de 2007 (Corporación Autónoma del Alto Magdalena - CAM, 2007) se declara como Parque Natural Regional a Cerro Banderas – Ojo Blanco en los territorios comprendidos en la zona con función amortiguadora del Parque Nacional Natural Nevado del Huila en los municipios de Íquira, Teruel, Santa María y Palermo en el departamento del Huila, como se puede identificar en la Tabla 1.

Tabla 1. Área inicial y participación Municipal dentro del PNR Cerro Banderas - Ojo Blanco.

MUNICIPIOS	Área (ha)	%
Teruel	3.367	13,52
Santa María	806	3,24
Palermo	392	1,58
Íquira	20.343	81,66
Total	24.914	100,00

Fuente: (CONIF - CAM, 2007).

2.2 CONCEPTO TÉCNICO DE 2013 DE PARQUES NACIONALES NATURALES.

Mediante concepto técnico 20132100059651 de fecha 18 de noviembre de 2013, Parques Nacionales Naturales (PNN) emite análisis de las áreas protegidas declaradas por la CAM (Parques Nacionales Naturales, 2013), informando el estado de conservación del PNR en la Tabla 2. En este concepto se informa que en general el "área protegida cumple con los atributos de biodiversidad por su composición, estructura y función, requeridos para la categoría de manejo de PNR de acuerdo con lo establecido en el Decreto 2372 de 2010" (compilado en el Decreto 1076 de 2015). Sin embargo, dos indicadores específicos no están el rango exigidos para los atributos, el de proporción de unidades espaciales naturales y el de continuidad altitudinal entre unidades espaciales.

Tabla 2. Análisis de contraste del PNR Cerro Banderas – Ojo Blanco en el año 2012.

				on a determination of the desired of				
ATRIBUTOS	Indicadores	Valor obtenido	Valor porcentual	Rango establecido la categoría	Cumple indicador	Cumple atributo ecológico		
Composición	 Número de unidades espaciales naturales 	5	5	>1	SI	SI		
Estructura	3.Proporción de unidades espaciales naturales (porcentaje)	78	78%	>95 %	SI	SI		
	4.Tamaño del fragmento más grande de la unidad espacial natural	53	100%	>80 %	SI			
	5.Número de fragmentos de la unidad espacial natural	16	100%	>60 %	SI			
	7. área núcleos efectiva (ha)	13551	89%	>80 %	SI			
Función	8.Conectividad entre fragmentos de las unidades espaciales naturales (m)	266	100%	>70 %	SI	SI		
	9.Continuidad longitudinal de las unidades espaciales naturales	99,5	99,5%	>98 %	SI			
	10.Continuidad altitudinal entre unidades espaciales Naturales (m)	1661	87 %	>90 %	SI			

Fuente: (Parques Nacionales Naturales, 2013)

En el documento emitido por Parques Nacionales Naturales se establece que el PNR Cerro Banderas – Ojo Blanco no cumple con los criterios de revisión de actos administrativos, existe una pequeña inconsistencia con el límite del PNN Nevado del Huila; se recomienda la revisión y ajuste del régimen de usos del área, de manera que sea compatible con la categoría de PNR o en su defecto la homologación a otra categoría de manejo, soportado mediante acto administrativo (Parques Nacionales Naturales, 2013).

3. CONTEXTO NORMATIVO

El proceso de homologación de categorías en las áreas protegidas se justifica gracias a la normatividad existente. Para la realización de este trabajo, se tuvo en cuenta las siguientes reglamentaciones, que se enuncian desde la más antigua hasta la más actual, como:

- Decreto ley 2811 de 1974: Código Nacional de los Recursos Naturales. "Las áreas destinadas a la conservación hacían parte del Sistema de Parques Nacionales Naturales o de áreas protegidas departamentales y municipales creadas con el apoyo de las Corporaciones Autónomas Regionales".
- Decreto 1974 de 1989 reglamentó el Artículo 310 del Código de Recursos Naturales (CRN) relativo a los Distritos de Manejo Integrado (DMI) y los definió como "un espacio de la biosfera (espacio de la tierra con su contenido biótico y abiótico) que, por razón de factores ambientales o socioeconómicos, se delimita para que, dentro de los criterios del desarrollo sostenible, se ordene, planifique y regule el uso y manejo de los recursos naturales renovables y las actividades económicas que allí se desarrollen".
- Artículo 58 de 1991 de la constitución política de Colombia: Expresa como acuerdo social, que se debe respetar la primacía del interés público sobre el interés privado de quien es propietario.
- Ley 99 de 1993: Se crea el Ministerio del Medio Ambiente, se reordena el Sector Público encargado de la gestión y conservación del medio ambiente y los recursos naturales renovables, se organiza el Sistema Nacional Ambiental (SINA), y se dictan otras disposiciones.
- Ley 165 de 1994: Se ratificó el Convenio sobre Diversidad Biológica (CDB), con base en "la cual se formuló la Política Nacional de Biodiversidad y se adquirió el compromiso de conformar y consolidar un Sistema Nacional de Áreas Protegidas (SINAP)".

- Ley 165 de 1996: Se dice que un "área protegida es aquella área definida geográficamente que haya sido designada o regulada y administrada a fin de alcanzar objetivos específicos de conservación".
- Resolución 572 del 04 de mayo del 2005, del Ministerio de Medio Ambiente y
 Desarrollo Sostenible: Por la cual se modifica la resolución 584 de 2002, en lo
 referente al listado de las especies silvestres que se encuentran amenazadas en
 el territorio nacional.
- Decreto 216 de febrero 03 de 2006: Se determinan los objetivos y la estructura orgánica del Ministerio de Ambiente, Vivienda y Desarrollo Territorial, son funciones de la Unidad Administrativa Especial de Parques Nacionales naturales (UAESPNN).
- Acuerdo 012 de 2007: Por el cual se declara el área natural Cerro Banderas Ojo Blanco como PNR (24.914,13 hectáreas).
- Decreto 2372 de 2010: Reglamenta el "Decreto Ley 2811 de 1974, la Ley 99 de 1993, la Ley 165 de 1994 y el Decreto Ley 216 de 2003, en relación con el establecimiento de los objetivos, criterios, directrices y procedimientos para la selección, establecimiento y ordenación de las áreas protegidas". Este decreto establece doce (12) categorías de manejo que se pueden homologar con categorías propuestas por la UICN.
- Sentencia de la Corte constitucional No 598 de 2010: Inhibe la potestad de sustraer o desafectar áreas de PNR. En virtud del artículo 63 de la Constitución Política, a los Parques Naturales se les otorga el carácter jurídico de indisponible inalienable, imprescriptible e inembargable -, sin que tal cualificación se reserve sólo a los del orden nacional, siendo así que "las áreas que conforman el Sistema de Parques Naturales y los Parques Naturales Regionales, se caracterizan por su valor, sus características excepcionales, por ser estratégicos, pero, en cualquier eventualidad, es indiscutible importancia la preservación del medio ambiente y la necesidad de garantizar la protección de ecosistemas diversos, ...".

- Acuerdo 013 de 2011: por el cual se modifica el acuerdo 012 de 2007, en el cual ratificó la figura de Parque Natural Regional y modificó el artículo tercero del Acuerdo No. 013 de 2007, para enmarcar los objetivos de conservación en el Decreto 2372.
- Concepto Técnico No. 20132100059651 de 2013 de PNN: Análisis de contraste áreas protegidas declaradas por la CAM.
- Resolución No. 1912 de 2017, Ministerio de Medio Ambiente y Desarrollo Sostenible: Por la cual se establece el listado de especies silvestres amenazadas de la diversidad biológica colombiana que se encuentran en el territorio nacional.
- Decreto 1076 de 2015: Por medio del cual se expide el Decreto Único Reglamentario del Sector Ambiente y Desarrollo Sostenible, compilando el Decreto 2372 de 2010. El artículo 2.2.2.1.2.1 del Decreto 1076 de 2015 señala lo siguiente: "ÁREAS PROTEGIDAS DEL SINAP. Las categorías de áreas protegidas que conforman el SINAP son: Áreas Protegidas Públicas: a) Las del Sistema de Parques Nacionales Naturales; b) Las Reservas Forestales Protectoras; c) Los Parques Naturales Regionales; d) Los Distritos de Manejo Integrado; e) Los Distritos de Conservación de Suelos; f) Las Áreas de Recreación Áreas Protegidas Privadas; g) Las Reservas Naturales de la Sociedad Civil".

4. CONTEXTO REGIONAL

Las áreas protegidas son espacios dedicados a la conservación de los recursos naturales, la biodiversidad y oferta de bienes y servicios ambientales. En el departamento del Huila son ecosistemas estratégicos en términos de diversidad natural, interacción con ecosistemas andinos y amazónicos, producción de agua para acueductos municipales y para producciones agrícolas y pecuarias.

El departamento del Huila tiene una extensión de 19.890 km² y está ubicado en el sur de Colombia, correspondiente a la región Andina, en la cuenca alta del Rio Magdalena, y en cuyo nacimiento se bifurca la cordillera de los Andes, que forma la cordillera Central y la cordillera Oriental.

Las áreas protegidas del departamento del Huila (Figura 1, Tabla 3) tienen una extensión de 618.115,35 hectáreas (33,4% del departamento) que corresponden a cinco Parques Naturales Nacionales (Cueva de los Guacharos, Puracé, Sumapaz, Serranía de Churumbelos y Nevado del Huila), siete Parques Naturales Regionales (Cerro Banderas-Ojo Blanco, Cerro Páramo de Miraflores "Rigoberto Urriago", Corredor Biológico Guacharos - Puracé, Siberia - Ceibas, Serranía de Minas, Páramo Las Oseras, El Dorado), dos Distritos Regionales de Manejo Integrado (La Tatacoa y Serranía de Peñas Blancas), una Reserva Forestal Protectora (Cuenca del río las Ceibas), 28 Parques Naturales Municipales, además de 115 Reservas Naturales de la Sociedad Civil (RUNAP, 2019).

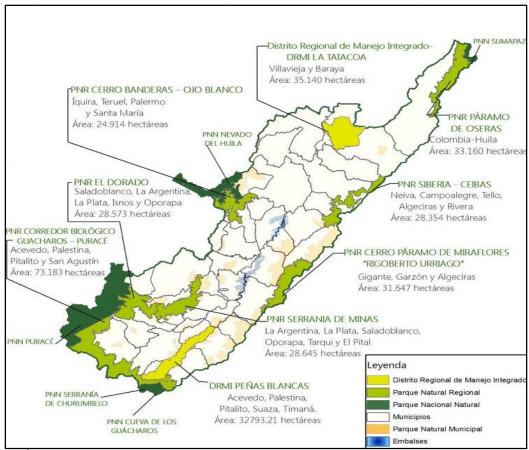


Figura 1. Áreas protegidas del departamento del Huila.

Fuente: CAM, 2018.

Tabla 3. Áreas protegidas del departamento del Huila para el año 2019

protegidas der departamento dei ridila para	Ci ano 2013
CATEGORÍA DE MANEJO	NÚMERO
Parques Nacionales Naturales	5
Reservas Forestales Protectoras	1
Parques Naturales Regionales	7
Distritos de Manejo Integrado	2
Distritos de Conservación de Suelos	0
Áreas de Recreación Áreas Protegidas	0
Reservas Naturales de la Sociedad Civil	115

El Parque Natural Regional Cerro Banderas - Ojo Blanco está ubicado en la zona de amortiguación del Parque Nacional Natural Nevado del Huila, se encuentra en la ecorregión del Macizo Colombiano; en jurisdicción de los municipios de Íquira, Teruel, Santa María y Palermo. La delimitación geográfica del Macizo Colombiano fue definida por el Ministerio de Ambiente y Desarrollo Sostenible, el Instituto de Hidrología,

Meteorología y Estudios Ambientales (IDEAM), Parques Nacionales Naturales (PNN) y el Sistema Regional de Áreas Protegidas del Macizo Colombiano (SIRAP Macizo) (Departamento Nacional de Planeación - DNP, 2018).

Son múltiples los procesos de conservación que se desarrollan y que se complementan y articulan al manejo del PNR. De acuerdo con la gestión que se ha venido desarrollando se destaca la gestión del Sistema Departamental de Áreas Protegidas del Huila, la del Sistema Regional de Áreas Protegidas del Macizo Colombiano; y el ordenamiento de la subcuenca del río Yaguará.

La importancia de la conservación del área está relacionada con la extensión del área existente en ecosistemas naturales; el recurso hídrico que presta bienes y servicios ambientales fundamentales para los habitantes del occidente del departamento; y la presencia de comunidades campesinas y su desarrollo productivo de importancia para toda la región.

5. POLÍGONO PROPUESTO

5.1. DELIMITACIÓN DEL POLÍGONO PROPUESTO

Teniendo en cuenta el estudio denominado propuesta de homologación PNR CBOB, elaborado por la CAM en el 2016, en el cual se presentó la propuesta de mejoramiento del polígono de la declaratoria, se considera que este es un polígono apropiado, realizado de manera armónica; realizando el ajuste necesario por la actualización de la cartografía con los límites departamentales y con el Parque Nacional Natural Nevado del Huila (*Figura 2*).

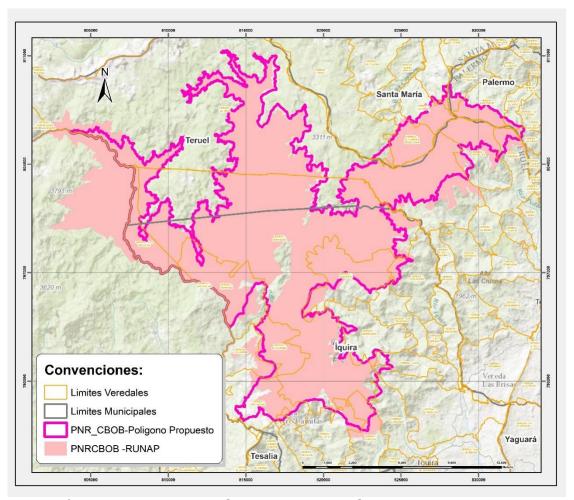


Figura 2. Polígono propuesto para Cerro Banderas – Ojo Blanco. Elaborado por el Consorcio PNR 2018, basado en (Corporación Autonoma Regional del Alto Magdalena - CAM, 2016).

5.2. ÁREAS DE CAMBIO DEL POLÍGONO

6. Comparando el área protegida inicial, con el área propuesta, se identifica un cambio del área total de 24.914 ha a 22.074 hectáreas (Figura 3), lo que significa una reducción del área de 2.841 ha. El área de cambio fue principalmente el resultado del ajuste al límite departamental con el Cauca emitido por el Instituto Geográfico Agustín Codazzi - IGAC por una pérdida de 2.488,4 ha (entre el tramo 1 y 18 – ver Figura 57) y el ajuste con los límites del Parque Nacional Natural Nevado del Huila con la cartografía a escala 1:25.000 registrada en RUNAP (entre el tramo 56 y 1). Adicionalmente para mejorar la orientación de la delimitación se tuvo en cuenta las curvas de nivel, los límites físicos como vías, divisorias de aguas, fuentes hídricas, cobertura (entre el tramo 20 y 56), y un mejoramiento de la forma del polígono (entre el tramo 19 y 20).

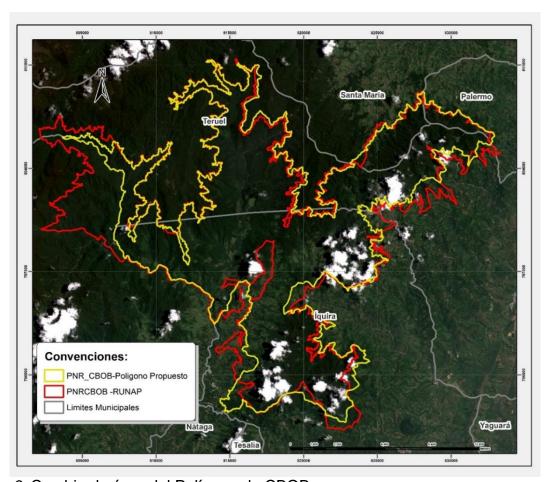


Figura 3. Cambio de área del Polígono de CBOB.

6. LOCALIZACIÓN GEOGRÁFICA

El polígono propuesto para la homologación se encuentra localizado en el flanco oriental de la Cordillera Central, limitando por el norte con el Parque Nacional Natural Nevado del Huila, con el nororiente con el Parque Natural Municipal de Santa María – Huila y con el occidente con el departamento del Cauca (*Figura 4*). El polígono propuesto comprende cuatro (4) municipios: Íquira, Teruel, Santa María y Palermo.

El área de estudio es de especial interés ambiental por la existencia de una red de nacimientos de agua y fuentes hídricas, las cuales surten una gran cantidad de acueductos veredales (CONIF - CAM, 2007).

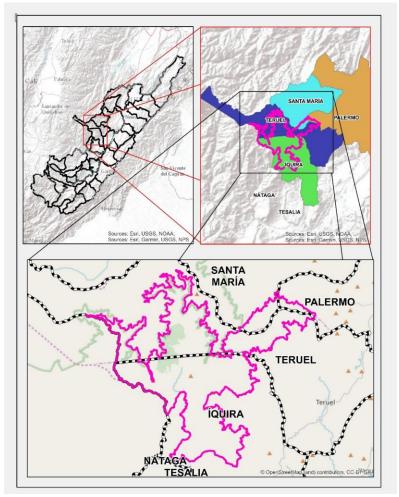


Figura 4. Localización del polígono propuesto para Cerro Banderas - Ojo Blanco.

6.1 DISTRIBUCIÓN MUNICIPAL Y VEREDAL

El polígono propuesto abarca (34) veredas (Tabla 4), distribuidos en los cuatro (4) municipios (*Figura 5*), donde se localizan las comunidades campesinas que integran la base comunitaria propia del área (*Figura 6*).

Tabla 4. Veredas que componen el polígono propuesto

MUNICIPIO	VEREDAS
ÍQUIRA	El Carmen, El Cóndor, El Pato, El Rosario, El Tote, Ibirco, Jaho, Juancho, La Copa, Las Delicias, Los Alpes, Los Andes, Narváez, Nazareth, Quebradón, Rionegro, San Francisco, San Isidro, Santa Rosa, Villa María, Zaragoza.
TERUEL	Corrales, La Armenia, La Floresta, La Mina, Pedernal.
SANTA MARÍA	Carmen de Bolívar, La Vega, Santa Librada.
PALERMO	Brisas del Nilo, El Viso, Horizonte, La Florida, Los Pinos.

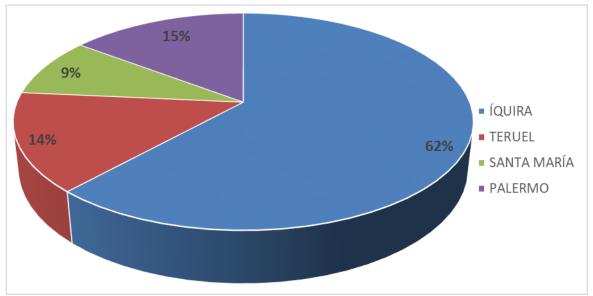


Figura 5. Distribución porcentual del número de veredas al interior del polígono propuesto.

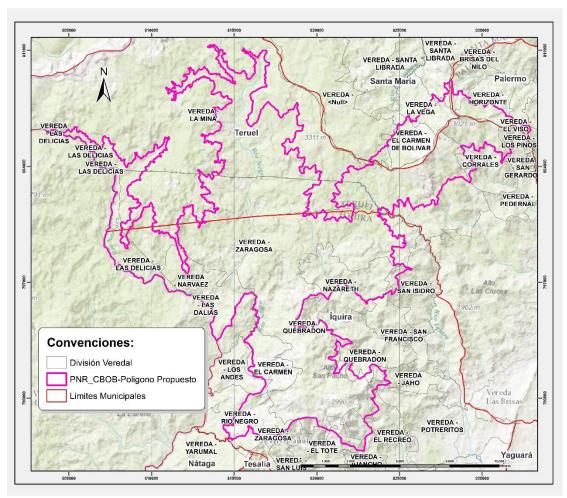


Figura 6. Distribución veredal y municipal del polígono propuesto.

7. CARACTERIZACIÓN BIOFÍSICA, SOCIOECONÓMICA Y CULTURAL

7.1 CLIMA

Basados en la información suministrada por el Instituto de Hidrología, Meteorología y Estudios Ambientales IDEAM (2011), se efectuó el inventario preliminar de las estaciones meteorológicas y se seleccionaron aquellas que se consideraron de utilidad para los propósitos y el alcance del estudio. El récord de información con que se cuenta para el análisis climático de la zona se considera significativo, dado a que existen estaciones climatológicas dentro del área de estudio. De acuerdo con las estaciones existentes dentro del área de estudio operadas por el IDEAM, se escogieron seis (6) estaciones representativas por el método grafico de polígonos de Thiessen, tres (3) son para el análisis pluviométrico y tres (3) para el análisis climático.

La información de las seis (6) estaciones seleccionadas corresponde a seis (6) años de registros para análisis (registros decadales). En general, puede decirse que las estaciones seleccionadas poseen información aceptable para el nivel de resultados que se pretende alcanzar en este estudio.

La Tabla 5, relaciona las estaciones meteorológicas empleadas para este estudio y referencia sus características generales tales como: tipo de estación, localización geográfica, coordenadas y altimetría.

Tabla 5. Estaciones meteorológicas empleadas para la determinación del análisis climático del área de influencia del polígono propuesto

Nº	ESTACIÓN	MUNICIPIO	TIPO	DPTO	COORDENADAS	ELEV.	AÑOS DE
.,	2017/01014	MONION 10	111 0	DI 10	000110211110110	m.s.n.m.	REGISTRO
1	La Mina	Teruel	Pluviográfica	Huila	2°47′ N - 75°37′ W	1800	2012-2017
2	El Volcán	Palermo	Pluviométrica	Huila	2°51' N - 75°33' W	1105	2012-2017
3	Yarumal	Nátaga	Pluviométrica	Huila	2°39' N - 75°45' W	1950	2012-2017
4	Terpeya Colombia	Íquira	CO	Huila	2°39' N - 75°39' W	1650	2012-2017
5	San Rafael	Teruel	CO	Huila	2°45′ N - 75°34′ W	1300	2012-2017
6	Santa María	Santa María	CO	Huila	2°56' N - 75°35' W	1300	2012-2017

CO: Climatológica Ordinaria.

Fuente: (Instituto de hidrología, meteorología y estudios ambientales - IDEAM, 2011).

La información correspondiente al valor de cada una de las variables atmosféricas para cada una de las décadas, el mes y el total de cada año del periodo seleccionado se graficaron en barras y líneas, con el objeto de observar el comportamiento de cada uno de los elementos durante el año en cada estación seleccionada para el estudio.

7.1.1 Precipitación

A nivel regional el clima del área responde a la ubicación general del territorio Nacional al interior de la Zona de Confluencia Intertropical (ZCTI) donde se presenta circulación de corrientes de aire húmedo correspondientes a los vientos Alisios del Este y del Oeste, que soplan hacia el Ecuador llegando a la Cordillera Central e interfiriendo con el régimen general de lluvias (Oster, 1979). Sin embargo, la Cordillera Oriental se comporta como una barrera que obstaculiza el paso de los vientos Alisios del Sureste, generando valores de precipitaciones más bajos sobre la Cordillera Central que sobre la vertiente Oriental de la Cordillera Oriental.

Estas condiciones determinan una dinámica espacial y temporal definida para el territorio colombiano y en especial para el área de estudio de acuerdo con lo presentado a continuación.

En la Tabla 6, Figura 7, Figura 8, Figura 9, se muestra el comportamiento de las precipitaciones medias decadales, mensuales y anuales para cada una de las estaciones.

Tabla 6. Distribución media decadal, mensual y anual de precipitación de las estaciones seleccionadas en el área de influencia del polígono propuesto

PERIODOS	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	ОСТ	NOV	DIC	VALOR ANUAL
ESTACIÓN LA MINA													
1 DÉCADA	39	59	52,3	47	76,3	42	8,6	16,3	15	38	64,3	37	495,2
2 DÉCADA	30	51	106	97	35,5	23	14	34,8	21	53	44,6	39	549,5

PERIODOS	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	ост	NOV	DIC	VALOR ANUAL
3 DÉCADA	71	36	74,5	51	57,3	6,7	22	8,9	41	74	60,3	36	538,7
TOTAL MES	139	147	233	195	169	72	45	60	78	164	169	112	1.583,4
ESTACIÓN EL VOLCÁN													
1 DÉCADA	52	92	60,2	56	98	33	7,7	16,7	22	42	97,7	85	662
2 DÉCADA	40	62	70,2	86	46	27	7	16	35	54	60,5	70	572
3 DÉCADA	59	60	101	37	37,3	22	8,2	7,8	29	100	77,7	65	603,5
TOTAL MES	151	213	231	178	181	82	23	40,5	86	196	236	220	1.837,5
	ESTACIÓN YARUMAL												
1 DÉCADA	60	67	83,5	40	70,7	42	31	22,2	29	55	90,2	76	665,6
2 DÉCADA	55	40	95,3	76	64,8	46	19	29,8	34	86	48,8	57	650,8
3 DÉCADA	65	44	104	87	54,5	38	34	30,8	22	54	83	71	686,8
TOTAL MES	181	151	282	203	190	126	84	82,8	85	194	222	204	2.003,2

Fuente: (Instituto de hidrología, meteorología y estudios ambientales - IDEAM, 2011).

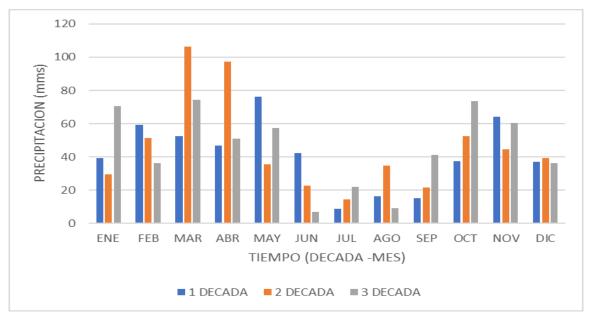


Figura 7. Promedios decadales, mensuales multianuales de precipitación de la estación La Mina.

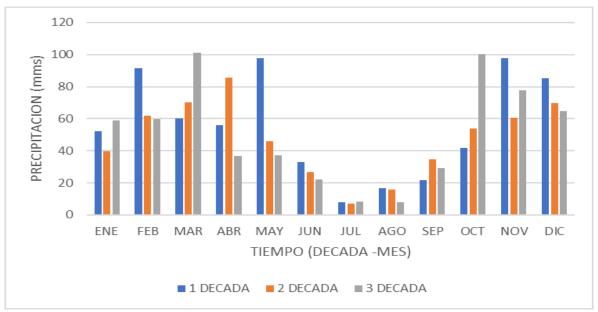


Figura 8. Promedios mensuales multianuales de precipitación de la estación El Volcán.

Figura 9. Promedios mensuales multianuales de precipitación de la estación Yarumal.

El análisis de la información proporcionada por las estaciones climatológicas seleccionadas determinan que el régimen de precipitación del área de influencia del Polígono propuesto para Cerro Banderas – Ojo Blanco a través del año (tanto decadal como mensual) tiene un ciclo de carácter bimodal; de esta manera, se observa dos períodos de lluvias y dos de verano bien diferenciados. El primer periodo de lluvia es más intenso que el segundo. También se observa que la lluvia caída en las décadas de

cada mes presenta una diferencia entre ellas, en algunos meses es bastante marcada y en otros no tanto, es decir, no tiende a llover uniformemente todo el mes.

La temporada del primer invierno o época lluviosa del año comienza en marzo y se extiende hasta mayo, siendo más prolongada y homogénea, con una pluviosidad mayor a la del segundo periodo; con valores promedio mensuales que oscilan entre 169 mm y 282 mm. El segundo periodo de lluvia se presenta en los meses de octubre, noviembre y diciembre, con valores promedio mensuales que oscilan entre 112 a 236 mm. El mes con más alta precipitación es marzo, registrado en la estación Yarumal, con valor de 282 mm.

El primer periodo seco o de verano se presenta en el mes de enero y se prolonga hacia finales de febrero, con valores de precipitación mensual que oscilan entre 139 mm a 213 mm; el siguiente periodo de estiaje se inicia en el mes de junio y finaliza en septiembre, con precipitaciones promedio mensuales que oscilan entre 23 mm a 126 mm. El mes con más baja precipitación es julio, registrado en la estación El Volcán, con valor de 23 mm.

Este anterior comportamiento define entonces una media anual multianual de 1.583,4 mm para la estación La Mina, 1.837,5 mm para la estación El Volcán y 2.003,2 mm para la estación Yarumal.

Las precipitaciones multianuales totales de las tres (3) estaciones presentan registros entre 1.583,4 mm a 2.003,2 mm, siendo la estación La Mina, la que registra la menor precipitación anual. Caso contrario sucede con la estación Yarumal, la cual registra la mayor precipitación anual.

De los registros de temperatura, humedad relativa, brillo solar y evaporación de las estaciones empleadas; se extraen los valores decadales, mensuales y anuales característicos del clima regional.

Este comportamiento temporal presenta asimismo variaciones espaciales en función de las características topográficas imperantes en la zona, generando de esta manera qué en las áreas de mayor altitud del Polígono propuesto, se presenten los mayores registros de precipitación, los cuales van descendiendo paulatinamente a medida que se aproxima a los sectores bajos.

7.1.2 Temperatura

Con base en los registros de Temperatura de las estaciones de Santa María, San Rafael y Terpeya Colombia, se elaboraron los histogramas correspondientes a cada una (Tabla 7, Figura 10, Figura 11, Figura 12).

Tabla 7. Distribución media decadal, mensual y anual de precipitación de las

estaciones seleccionadas en el área de influencia del Polígono propuesto

estaciones seleccionadas en el area de influencia del Poligono propuesto													
PERIODOS	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	ост	NOV	DIC	VALOR ANUAL
						,		_ , .					/!!!
ESTACIÓN SANTA MARÍA													
1 DÉCADA	20,7	20,6	20,7	21,2	20,7	20,7	20,8	20,8	20,9	21	20,5	20,6	20,8
2 DÉCADA	20,6	20,7	20,7	20,9	20,9	20,7	20,7	20,7	21	20,6	20,4	20,4	20,7
3 DÉCADA	20,7	20,7	20,7	20,9	20,7	20,6	20,6	20,8	21,2	20,8	20,6	20,7	20,8
TOTAL	20,7	20,7	20,7	21,0	20,8	20,7	20,7	20,8	21,0	20,8	20,5	20,6	20,8
MES													
				E	STACI	ÓN SAI	N RAF	\EL	ı		ı	ı	
PERIODOS	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	OCT	NOV	DIC	
1 DÉCADA	23,8	23,3	23	23,2	23,7	24,1	23,8	23,8	24,1	24,5	23,4	23,4	23,7
2 DÉCADA	23,6	23,7	23,2	23,5	23,5	23,8	23,6	23,5	24,2	23,4	23,2	23,4	23,6
3 DÉCADA	23,8	23,5	22,3	23	23,5	23,8	23,7	24,2	24,6	24,3	23,4	23,7	23,6
TOTAL	23,7	23,5	22,8	23,2	23,6	23,9	23,7	23,8	24,3	24,1	23,3	23,5	23,6
MES													
				ESTA	ACIÓN T	TERPE	YA COI	OMBIA					
PERIODOS	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	OCT	NOV	DIC	
1 DÉCADA	18,4	18,7	18	18,7	18,9	19	19	19	19,7	19,4	18,8	18,2	18,8
2 DÉCADA	18,7	18,7	18,7	18,9	18,9	18,8	18,5	18,5	20,2	18,3	19,2	18,2	18,8
3 DÉCADA	19,2	18,7	18,4	18,6	18,7	18,7	18,7	19,4	18,8	18,7	17,9	18,7	18,7
TOTAL	18,8	18,7	18,4	18,7	18,8	18,8	18,7	19,0	19,6	18,8	18,6	18,4	18,8
MES													

Fuente: (Instituto de hidrología, meteorología y estudios ambientales - IDEAM, 2011).

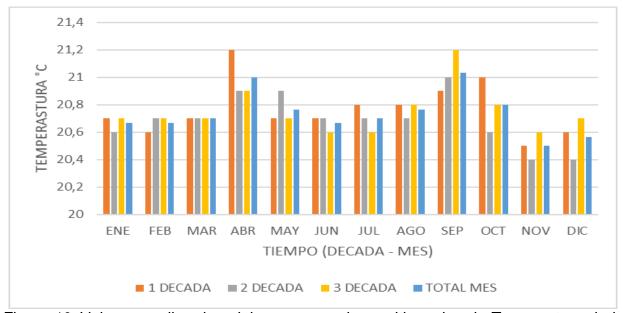


Figura 10. Valores medios decadales y mensuales multianuales de Temperatura de la estación Santa María.

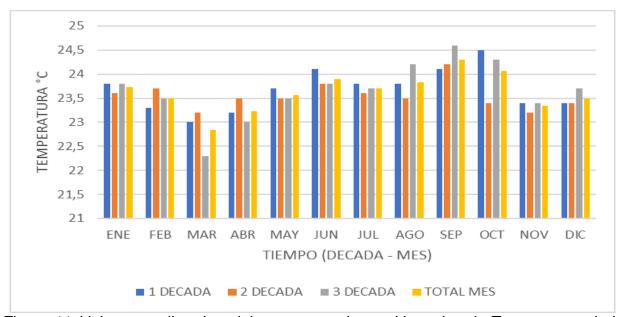


Figura 11. Valores medios decadales y mensuales multianuales de Temperatura de la estación San Rafael.

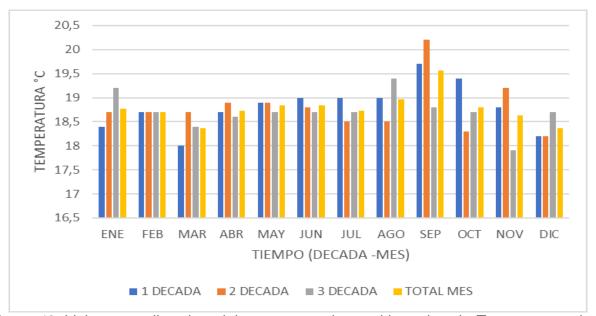


Figura 12. Valores medios decadales y mensuales multianuales de Temperatura de la estación Terpeya Colombia.

Según los registros de temperatura tanto decadales como mensuales, presentan un comportamiento relativamente homogéneo a lo largo de todo el año en el área del proyecto, aunque asociado con los períodos lluviosos descritos anteriormente.

La dinámica de la temperatura presenta un comportamiento bimodal inverso al de las precipitaciones en donde el período lluvioso registra las menores temperaturas dada la influencia de la nubosidad asociada a la precipitación, que actúa como barrera al impedir la llegada directa de los rayos solares.

De acuerdo con la información proporcionada por las estaciones climatológicas seleccionadas, los meses de mayor temperatura corresponden a septiembre y octubre con valores de temperatura que oscilan entre 20,9 a 24,5°C; los meses de menor temperatura corresponden a marzo – abril y noviembre – diciembre con temperaturas entre 18,0 a 23,7°C.

La variación de temperatura a nivel mensual presenta un gradiente bajo, sin llegar a superar los seis (6) grados centígrados, característica propia de las regiones tropicales

y consecuentemente del área del Polígono propuesto donde adquiere mayor relevancia la fluctuación diaria, que está condicionada por el brillo solar, la dirección de los vientos y la nubosidad. Además, los efectos de la orografía inciden en el comportamiento de la temperatura, a mayor elevación menor temperatura y viceversa.

7.1.3 Humedad Relativa

Con base en los registros de Humedad Relativa (Tabla 8, Figura 13, Figura 14, Figura 15) de las estaciones de Santa María, San Rafael y Terpeya Colombia, se elaboraron los histogramas correspondientes a cada una.

Tabla 8. Distribución media decadal, mensual y anual de Humedad Relativa de las

estaciones seleccionadas en el área de influencia del Polígono propuesto

PERIODOS	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	ост	NOV	DIC	VALOR ANUAL
ESTACIÓN SANTA MARÍA													
1 DÉCADA	82	84	83	83	84	82	80	80	79	82	84	84	82
2 DÉCADA	83	84	84	84	83	81	81	80	78	84	84	84	82
3 DÉCADA	83	84	83	82	83	81	80	78	78	83	84	83	82
TOTAL	83	84	83	83	83	81	80	79	78	83	84	84	82
MES													
	'			E	STACI	AR NÒ	N RAFA	EL					
PERIODOS	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	OCT	NOV	DIC	
1 DÉCADA	77	83	84	82	80	78	74	69	69	74	82	83	78
2 DÉCADA	79	81	84	81	82	79	75	72	71	79	86	83	79
3 DÉCADA	82	81	88	82	82	77	72	69	71	76	85	80	79
TOTAL	79	82	85	82	81	78	74	70	70	76	84	82	79
MES													
				ESTA	CIÓN T	ERPE	YA COL	OMBIA					
PERIODOS	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	OCT	NOV	DIC	
1 DÉCADA	87	88	91	85	84	76	73	72	68	78	85	87	81
2 DÉCADA	87	88	88	81	86	75	80	80	68	88	83	89	83
3 DÉCADA	83	85	88	85	83	76	71	74	84	91	90	83	83
TOTAL	86	87	89	84	84	76	75	75	73	86	86	86	82
MES													

Fuente: (Instituto de hidrología, meteorología y estudios ambientales - IDEAM, 2011).

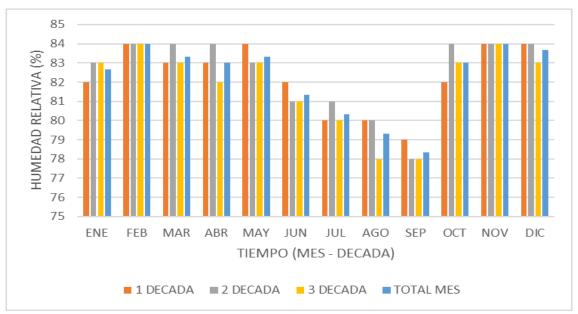


Figura 13. Valores medios decadales y mensuales multianuales de Humedad Relativa de la estación Santa María.

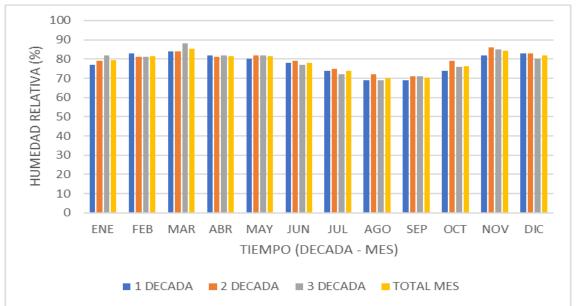


Figura 14. Valores medios decadales y mensuales multianuales de Humedad Relativa de la estación San Rafael.

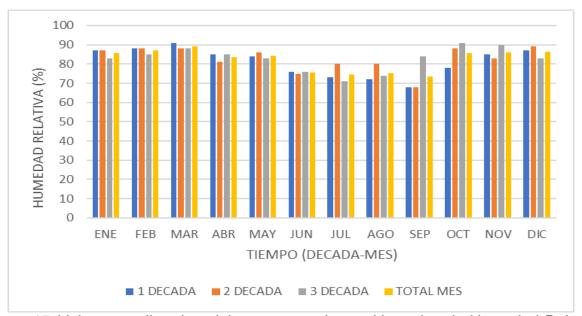


Figura 15. Valores medios decadales y mensuales multianuales de Humedad Relativa de la estación Terpeya Colombia.

Este parámetro se define como el cociente entre la cantidad de vapor de agua en un volumen de aire y la cantidad posible en el mismo volumen y a la misma temperatura. La humedad relativa crece al aumentar el contenido de vapor de agua y disminuye al reducirse; depende además de la temperatura del aire, puesto que de este parámetro también depende la presión de saturación. Así al calentar o enfriar el vapor de agua, se disminuye o aumenta el valor de la humedad relativa.

Los registros de humedad relativa tanto decadales como mensuales, presentan un comportamiento relativamente homogéneo a lo largo de todo el año en el área del polígono propuesto.

Durante los meses más cálidos, la humedad relativa es baja mientras que en la temporada húmeda la relación se invierte. Esto significa que los mayores valores de humedad se presentan en los meses de marzo a abril para el primer semestre del año y de noviembre a diciembre para el segundo, alcanzando valores hasta del 91% según los datos reportados por la estación Terpeya Colombia y los meses de menor humedad están entre septiembre y octubre, con valores de 68% registrados en la estación

Terpeya Colombia.

Es importante hacer referencia a la variación diaria de la humedad relativa, la cual se encuentra regulada por el ciclo solar diario, de tal forma que la temperatura mínima y la máxima humedad relativa se obtienen generalmente un poco antes del amanecer, mientras que la temperatura máxima y mínima humedad ocurren después del mediodía.

7.1.4 Caracterización y Clasificación Climática

Sobre la caracterización climática del país se han realizado numerosos trabajos en los cuales se han utilizado diferentes clasificaciones reconocidas en el mundo, tales como, Köeppen, Thornthwaite, Caldas, Lang, Martone y Holdridge entre otras.

En general todas estas clasificaciones están basadas en el comportamiento medio de los parámetros como la precipitación y la temperatura principalmente.

En este estudio se aplica la metodología de Caldas-Lang reconocida para Colombia, la que ha sido evaluada y desarrollada en innumerables estudios.

Dicha clasificación parte de dos propuestas iniciales:

- En 1802 Francisco José de Caldas propuso una clasificación climática basada en la variación de la temperatura con la altura (pisos térmicos) y su aplicabilidad es exclusiva para el trópico americano. Se establecen cinco (5) pisos térmicos: cálido, templado, frío, páramo bajo y páramo alto.
- En 1915 Richard Lang establece una clasificación que utiliza la precipitación anual
 (P) expresada en milímetros y la temperatura media anual (T) expresada en
 grados centígrados, relacionándolas mediante un cociente llamado factor Lang. El
 resultado es seis (6) clases de climas: desértico, árido, semiárido, semihúmedo,
 húmedo y superhúmedo.

Posteriormente, Schaufelberguer en 1962, unió la clasificación Caldas con la de Lang generando 25 tipos de climas que tienen en cuenta la elevación del lugar, la temperatura media anual y la precipitación total media anual (Tabla 9).

Tabla 9. Caracterización climática por el método de Caldas – Lang

Tipo Climático	Altitud (msnm)	Temperatura (°C)	Variación de la Altitud por condiciones locales	Humedad	Factor Lang (P/T)	Símbolo
				Superhúmedo	>160.0	CSH
				Húmedo	100.1 a 160.0	CH
		_		Semihúmedo	60.1 a 100.0	CsH
Cálido	0 a 1000	T > 24	Límite superior 400	Semiárido	40.1 a 60.1	Csa
				Árido	20.1 a 40	CA
				Desértico	0 a 20	CD
				Superhúmedo	>160.0	TSH
	1001		17.7	Húmedo	100.1 a 160.0	TH
Templado	1001 a	24 >T>17.5	Límite superior 500	Semihúmedo	60.1 a 100.0	Tsh
	2000		Límite inferior 500	Semiárido	40.1 a 60.1	Tsa
				Árido	20.1 a 40	TA
				Desértico	0 a 20	TD
				Superhúmedo	>160.0	FSH
				Húmedo	100.1 a 160.0	FH
	2001 a	47.F. T. 40	Límite superior 400	Semihúmedo	60.1 a 100.0	Fsh
Frio	3000	17.5 >T>12	Límite inferior 400	Semiárido	40.1 a 60.1	Fsa
				Árido	20.1 a 40	FA
				Desértico	0 a 20	FD
				Superhúmedo	>160.0	PBSH
Páramo	3001 a	12 >T>7		Húmedo	100.1 a 160.0	PBH
Bajo	3700	12>1>1		Semihúmedo	60.1 a 100.0	PBsh
				Semiárido	40.1 a 60.1	Pbsa
Páramo Alto	3701 a	T<7		Superhúmedo	>160.0	PASH
	4200			Húmedo	100.1 a 160.0	PAH
Nieves Perpetuas	>4200					NP

Adaptado de Schaufelberguer.

La información contenida en las estaciones seleccionadas permitió la aplicación de la clasificación climática de Caldas-Lang en el Polígono propuesto para Cerro Banderas – Ojo Blanco, teniendo como soporte un sistema de información geográfico donde se correlacionaron espacialmente las variables requeridas para la aplicación de la metodología: precipitación, temperatura y altura (Tabla 9).

Los resultados encontrados determinan que en el polígono propuesto para Cerro Banderas – Ojo Blanco, se presentan seis (6) tipos climáticos (Tabla 10, Figura 16), siendo los más representativos en extensión: Frio Húmedo (91,47%), Parama Bajo

Superhúmedo (3,85%), Frio Superhúmedo (3,81%), Templado Húmedo (0,83%), Templado Semihúmedo (0,01%), Páramo Bajo Húmedo (0,01%).

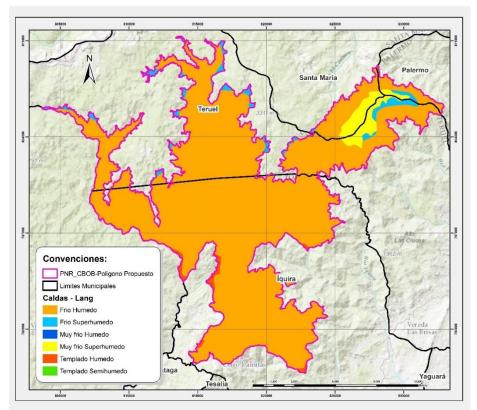


Figura 16. Mapa de Clasificación Climática.

Como se puede observar el mayor porcentaje de área corresponde a un piso térmico Frio Húmedo, caracterizado por alturas entre los 2.001 m.s.n.m. a 3.000 m.s.n.m. temperaturas entre 17,5 °C>T>12,0°C, información que se valida con los datos de las estaciones climáticas seleccionadas por polígonos de Thiessen.

Tabla 10. Representatividad de los tipos climáticos por el método de Caldas – Lang

<u> </u>		
TIPO CLIMATICO	AREA (Ha)	REPRESENTATIVIDAD DEL AREA (%)
Templado Semihúmedo	3,12	0,01%
Templado Húmedo	191,23	0,9%
Frio Húmedo	20465,62	92,7%
Frio Superhúmedo	629,71	2,9%
Páramo Bajo Húmedo	0,26	0,001%
Páramo Bajo Superhúmedo	783,86	3,6%
TOTAL	22.073,8	100,0

7.1.5 Balance hídrico

El cálculo del balance hídrico climático consiste en comparar las precipitaciones con el 50% de probabilidad de ocurrencia (P_{50%}), con la evapotranspiración potencial (ETP). También se obtiene información del almacenamiento de agua (ALM), que es la cantidad de agua aprovechada por las plantas que pueda conservar el suelo y depende de la textura y profundidad. Se considera que un suelo puede almacenar como máximo 100 mm de altura de agua y como mínimo 0. La variación de la reserva (P ALM), puede ser positiva hasta los 100 mm (máximo) y negativa hasta los –100 mm (mínimo).

De acuerdo con lo anterior y ordenando los valores de las estaciones base de mayor a menor se calculó la precipitación con probabilidad de ocurrencia del 50% y 80%, los cuales se obtuvieron transformando los datos de frecuencia a probabilidad.

En las Tabla 11, Tabla 12, Tabla 13, se lista la información de precipitación con probabilidad del 50% y 80%, estimadas a partir de la información decadal mensual multianual de las estaciones climáticas La Mina, El Volcán y Yarumal. Así mismo, las Tabla 14, Tabla 15, Tabla 16, Figura 17, Figura 18, Figura 19, presentan los balances hidrológicos estimados con la información decadal mensual multianual de las estaciones Santa María, San Rafael y Terpeya Colombia.

Tabla 11. Precipitación decadal estación La Mina (probabilidad del 50% y 80%)

No.	PR		EN	ERO		FEBR	ERO		MARZO)		ABRIL	-		MAYO			JUNI	0
orden	(%)	1	II	Ш	- 1	II	Ш	ı	II	Ш	- 1	II	III	-1	Ш	III	1	II	Ш
1	17	118,5	47,2	118,3	140,0	84,0	94,6	103,0	228,0	160,0	102,6	171,0	51,6	218,3	81,4	76,5	83,8	44,2	15,9
2	33	56,3	31,5	89,0	66,6	76,5	34,6	70,0	138,0	95,3	97,6	120,7	99,1	97,6	50,1	95,7	94,6	46,5	9,2
3	50	32,4	30,3	72,1	39,1	62,5	32,2	58,1	112,7	65,0	54,3	103,1	59,4	72,3	29,8	71,1	27,9	22,7	7,4
4	67	29,3	25,2	72,1	39,0	40,5	24,3	34,0	86,3	52,1	17,5	101,4	51,8	35,7	20,1	60,3	19,4	13,2	5,8
5	83	0,0	21,5	57,5	38,1	33,0	24,1	31,1	63,8	42,7	8,2	72,5	24,5	33,3	16,7	33,3	14,7	9,3	1,2
6	100	0,0	21,3	13,7	32,0	11,6	8,1	18,2	8,6	32,1	0,0	15,3	20,3	0,6	14,6	7,1	14,0	0,0	0,5
No.	PR		JU	LIO		AGO	sto	SE	PTIEMB	RE	C	стив	RE	NO	VIEME	BRE	DI	CIEMI	BRE
orden	(%)	I	II	Ш	ı	II	III	ı	II	III	ı	II	III	ı	II	Ш	ı	II	III

1	17	31,7	26,3	52,0	77,5	50,1	26,2	34,4	77,6	140,1	115,2	107,1	222,3	137,5	69,3	134,5	68,0	96,7	111,4
2	33	11,1	29,6	29,1	11,7	47,9	14,4	24,4	32,7	54,8	27,8	68,5	96,0	81,8	57,6	69,3	58,2	57,0	45,4
3	50	5,6	17,8	21,6	5,0	39,2	6,0	14,6	12,5	24,3	26,4	59,7	29,0	55,9	51,4	53,6	33,0	21,3	17,8
4	67	1,7	11,3	18,0	2,7	30,6	5,4	13,1	4,6	19,2	22,3	41,9	26,7	54,2	24,4	40,6	23,3	16,3	6,4
5	83	1,4	0,6	5,8	0,6	23,5	0,9	4,3	0,9	6,0	14,3	38,3	23,5	28,8	5,0	34,7	2,9	4,3	0,1
6	100	0,0	0,0	4,8	0,0	17,2	0,5	0,0	0,0	3,1	9,1	7,1	0,0	0,0	0,0	0,0	0,0	0,0	0,0

Tabla 12. Precipitación decadal estación El Volcán (probabilidad del 50% y 80%)

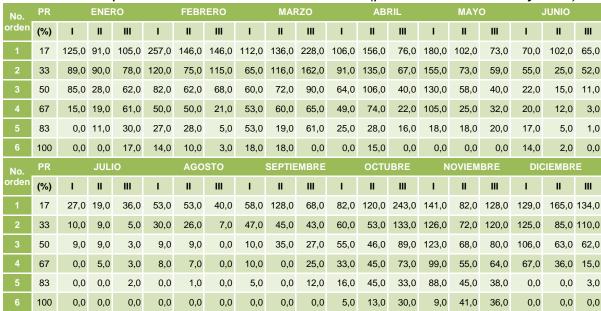


Tabla 13. Precipitación decadal estación Yarumal (probabilidad del 50% y 80%)

No.	PR		ENEF	RO	F	EBRE	२०		MARZO		Д	BRIL		MA	1 0		JUI	NIO	
orden	(%)	1	П	III	ı	II	Ш	ı	II	III	ı	II	III	ı	II	III	ı	II	Ш
1	17	182,0	113,0	128,0	153,0	67,0	69,0	137,0	147,0	194,0	62,0	138,0	167,0	168,0	194,0	90,0	57,0	109,0	72,0
2	33	94,0	79,0	87,0	85,0	65,0	53,0	113,0	121,0	153,0	50,0	101,0	106,0	82,0	95,0	80,0	55,0	87,0	64,0
3	50	56,0	62,0	65,0	78,0	49,0	47,0	101,0	97,0	116,0	49,0	97,0	96,0	78,0	36,0	77,0	51,0	36,0	32,0
4	67	28,0	62,0	63,0	47,0	27,0	43,0	71,0	73,0	68,0	43,0	47,0	70,0	77,0	26,0	36,0	37,0	18,0	24,0
5	83	0,0	10,0	38,0	27,0	17,0	41,0	53,0	70,0	57,0	24,0	40,0	69,0	11,0	23,0	35,0	33,0	17,0	20,0
6	100	0,0	6,0	10,0	14,0	12,0	10,0	26,0	64,0	33,0	10,0	34,0	15,0	8,0	15,0	9,0	20,0	6,0	15,0
No.	PR		JULI	0	ı	AGOST	О	SE	PTIEMB	RE	ОС	TUBRE	I	NOVIE	MBRE		DICIE	MBRE	
orden	(%)	ı	II	III	I	II	Ш	ı	II	III	I	II	III	ı	II	III	ı	II	Ш
1	17	52,0	34,0	54,0	41,0	48,0	43,0	45,0	66,0	30,0	126,0	122,0	88,0	140,0	95,0	152,0	130,0	94,0	167,0
2	33	45,0	30,0	52,0	25,0	33,0	36,0	43,0	52,0	30,0	53,0	90,0	64,0	121,0	88,0	104,0	120,0	83,0	129,0
3	50	34,0	19,0	39,0	23,0	31,0	29,0	29,0	31,0	24,0	45,0	89,0	47,0	68,0	28,0	83,0	87,0	54,0	43,0
4	67	25,0	16,0	23,0	22,0	28,0	24,0	16,0	20,0	15,0	42,0	86,0	46,0	63,0	20,0	40,0	35,0	44,0	18,0
5	83	17,0	16,0	19,0	0,0	9,0	22,0	10,0	1,0	12,0	9,0	41,0	23,0	59,0	13,0	36,0	7,0	8,0	0,0

Tabla 14. Balance hidro climático a nivel decadal estación Santa María

MESES		EN	ΙE		ŀ	EB		MA	\R		AB	R		M	ΑY		JU	N
DÉCADA	ı	II	III	ı	II	III	ı	II	III	ı	II	III	- 1	II	III	ı	II	III
PREC-50%	32,40	30,30	72,10	39,10	62,50	32,20	58,10	112,70	65,00	54,30	103,10	59,40	72,30	29,80	71,10	27,90	22,70	7,40
ETP	24,80	24,89	28,36	26,67	27,57	21,34	25,79	24,90	28,00	26,02	26,58	17,81	25,64	25,17	27,89	25,54	25,73	25,45

MESES		JU	L		Α	(GO		SEI	P		ОСТ			NOV			DIC	
DÉCADA	ı	П	III	1	Ш	III	1	П	Ш	Т	Ш	III	- 1	II	III	ı	П	III
PREC-50%	5,60	17,80	21,60	5,00	39,20	6,00	14,60	12,50	24,30	26,40	59,70	29,00	55,90	51,40	53,60	33,00	21,30	17,80
ETP	25,17	24,90	27,49	25,08	25,17	28,21	26,11	26,58	26,11	25,64	25,17	27,69	25,17	25,17	24,99	24,81	24,63	18,06

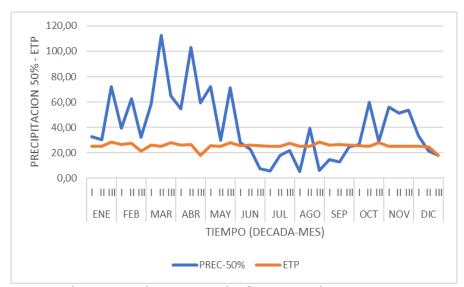


Figura 17. Balance hídrico climático estación Santa María.

Tabla 15. Balance hidro climático a nivel decadal estación San Rafael

MESES		EN				EB		MA	AR		AE	3R		M.A	ΑY		JL	IN
DÉCADA	I	II	III	ı	II	Ш	ı	Ш	Ш	I	II	III	I	II	III	I	II	III
PREC-50%	85,00	28,00	62,00	82,00	62,00	68,00	60,00	72,00	90,00	64,00	106,00	40,00	130,00	58,00	40,00	22,00	15,00	11,00
ETP	31,50	31,78	35,87	33,43	34,26	25,84	30,34	28,37	32,11	30,00	30,82	30,99	31,16	31,33	35,28	32,82	33,57	32,95

MESES		JU	L		A	(GO		SE	-		ОСТ		1	10V			DIC	
DÉCADA	I	II	III	ı	II	III	ı	II	III									
PREC-50%	9,00	9,00	3,00	9,00	9,00	0,00	10,00	35,00	27,00	55,00	46,00	89,00	123,00	68,00	80,00	106,00	63,00	62,00
ETP	32,33	31,71	35,02	31,97	32,09	36,44	34,17	35,20	34,56	33,91	33,27	35,84	31,89	31,20	31,12	31,03	30,95	22,69

Figura 18. Balance hídrico climático estación san Rafael.

Tabla 16. Balance hidro climático a nivel decadal estación Terpeya Colombia.

MESES		EN				FEB			AR		AE			M	<u>' </u>			JN
DÉCADA	I	II	III	ı	II	III	I	II	III	I	Ш	III	ı	II	Ш	I	II	III
PREC-50%	56,00	62,00	65,00	78,00	49,00	47,00	101,00	97,00	116,00	49,00	97,00	96,00	78,00	36,00	77,00	51,00	36,00	32,00
ETP	21,92	22,23	25,22	23,63	24,33	18,65	22,31	21,29	23,94	22,24	22,71	22,54	22,37	22,21	24,70	22,70	22,95	22,62

MESES		JU	L		A	\GO		SE	•		ОСТ	•		NOV			DIC	
DÉCADA	ı	II	III	ı	II	III	ı	II	III	ı	II	Ш	ı	II	III	ı	II	III
PREC-50%	34,00	19,00	39,00	23,00	31,00	29,00	29,00	31,00	24,00	45,00	89,00	47,00	68,00	28,00	83,00	87,00	54,00	43,00
ETP	22,30	21,98	24,43	22,44	22,67	25,75	24,15	24,89	23,99	23,10	22,21	24,52	22,38	22,47	22,08	21,69	21,29	15,62

Figura 19. Balance hídrico climático Terpeya Colombia.

En general, de los balances hidroclimáticos de las tres (3) estaciones seleccionadas, se deduce que el polígono propuesto para Cerro Banderas — Ojo Blanco, presenta régimen de lluvias bimodal con temporadas de estiaje en los meses de diciembre a febrero y de junio a septiembre y época de lluvias en los meses marzo a junio y octubre a noviembre, con precipitaciones acumuladas anuales de 1447, 1898 y 2026 mm para las estaciones Santa María, San Rafael y Terpeya Colombia, respectivamente. Los valores de la evapotranspiración potencial (ETP) tienden a ser constantes durante el año, alcanzando totales anuales de 914,3, 1157,8 y 816,5; para las mismas estaciones. Como la precipitación supera buena parte del año la ETP, solo se presenta déficit en la temporada seca más acentuada, que corresponde a la del segundo semestre en los meses de junio a septiembre. Dado lo anterior, la oferta hídrica en gran parte del año supera los requerimientos climáticos y por tanto hay exceso de humedad, lo cual determina una oferta ambiental favorable, que permite la conservación natural del Parque Natural.

Existe un periodo de déficit en los meses de junio, julio, agosto y septiembre, en la cual la precipitación es menor que la evapotranspiración potencial, pero este déficit se repone con el inicio de la segunda temporada estival.

En el Anexo 1, se tiene el complemento de Brillo Solar, Evaporación y Cálculo de evapotranspiración potencial.

7.2 GEOLOGÍA

A continuación, se presenta el estudio realizado para el plan de manejo del PNR (CONIF - CAM, 2007, pág. 26):

Las características geológicas del Huila están vinculadas al origen y evolución de las cordilleras Central y Oriental, y en particular al desarrollo del valle alto del río

Magdalena. De ahí la gran variedad de litologías, unidades morfoestructurales, suelos, tipos de relieve y paisajes, producto del fuerte tectonismo, manifiesto en la cantidad de fallas y la gran actividad volcánica y sísmica (CONIF - CAM, 2007, pág. 26).

Los cambios climáticos durante pasadas glaciaciones produjeron procesos erosivos que modelaron los diferentes paisajes sobre la parte más alta de la cordillera Central. Se destacan las rocas metamórficas e ígneas intrusivas y extrusivas asociadas a la cordillera Central y Oriental, geológicamente la región Cerro Banderas – Ojo Blanco, presenta varias unidades litológicas de distinto origen: ígneo, sedimentario y metamórficas, de diferente edad desde el Triásico - Jurásico del Mesozoico (Secundario) Terciario hasta el Cuaternario (CONIF - CAM, 2007, pág. 26).

La conformación geológica general del departamento fue estudiada por (Royo y Gómez, 1942), quien dividió el territorio Huilense en cuatro regiones de las que se puede decir que la región Banderas - Ojo Blanco se encuentra en la que se denominó como: Región al Oeste y Suroeste de Neiva (CONIF - CAM, 2007, pág. 26).

Un territorio típico de esta región es el municipio de Teruel que se asienta sobre una terraza fluvial del río Pedernal en los límites del terreno terciario con los más antiguos que forman la cordillera Central, correspondiente al intrínseco ígneo (CONIF - CAM, 2007, pág. 26).

El río Pedernal que marca la parte norte de la región Banderas – Ojo Blanco, arrastra cantos y bloques procedentes de la cordillera, como una pudinga muy dura metamorfoseada tan dura, similar al Pedernal (sílice amorfo no cristalizado), pero además con indicios de minerales metálicos, tales como blenda, galena, etc. (CONIF - CAM, 2007, pág. 26).

Aguas arriba del Pedernal, hacia la confluencia de la quebrada la María, también en territorio de la región Banderas, aparece el terreno formado por una granodiorita muy cuarcífera y filones de cuarzo algo metalizado (CONIF - CAM, 2007, pág. 26).

En la quebrada la María como en el río Pedernal, se puede examinar en sus aluviones, un verdadero muestrario de las rocas que forman la cordillera, tales como las del conjunto verdoso - porfirítico, o sea conglomerados duros, cuarcitas, liditas y porfirita cuarcífera, todas más o menos metamorfoseadas y con epidota; ígneas como la diorita, microdiorita y andesita y metamórficas como la anfibolita (CONIF - CAM, 2007, pág. 26).

A nivel más detallado y con base en los estudios de Gómez H., 1992, que distribuye el departamento en seis provincias, se puede ubicar la región Banderas Ojo Blanco dentro de la que se conoce como Bloque Íquira – Teruel – Aipe, que ocupa la parte más noroccidental del departamento, y está limitado al este por el río Magdalena, y por el oeste con la falla La Plata – Pacarní, que pone en contacto las rocas intrusivas del macizo de la Plata con las rocas plegadas del Cretácico y Terciario (CONIF - CAM, 2007, pág. 26).

La deformación a que fueron sometidas estas rocas produjo los principales rasgos de las estructuras en la región (CONIF - CAM, 2007, pág. 26).

- Amplios sinclinales en cuyo núcleo se encuentra la secuencia terciaria.
- Anticlinales estrechos, alargados y tectónicamente complejos.
- Asimetría de pliegues. En general en casi todos los sinclinales el de flanco occidental es abrupto, mientras que el oriental es suave.
- Fallas longitudinales inversas en su mayoría de las cuales el bloque yacente es el occidental y se disponen paralelas a los ejes de los pliegues.
- Fallamiento de rumbo transversal cual corta las estructuras.

Las unidades geológicas del polígono correspondiente a Cerro Banderas – Ojo Blanco, corresponden al Batolito de Ibagué (Ji) con el 56%, Formación Saldaña (Js) con el 20%, Formación Loma Gorda (Kl) con el 10%, Formación Payandé (Trp) con el 9% y Formación Luisa (Trl) con el 5% (Figura 20).

La unidad geológica predominante en Cerro Banderas es el Batolito de Ibagué que el cuerpo intrusivo de mayor extensión en el Departamento del Huila. En cuanto a su litología, las rocas son de composición variada, entre granitos y tonalitas, donde dominan las composiciones intermedias que corresponden a tonalitas y granodioritas y subordinadamente monzogranitos, cuarzodioritas y cuarzomonzonitas, con color blanco-grisáceo dominante, moteado de negro por los ferromagnesianos. La textura es fanerítica medio a grosogranular, generalmente inequigranular. Los minerales félsicos son cuarzo (6-20%), plagioclasa (50-85%) de composición intermedia (andesina-oligoclasa) y feldespato potásico (5-40%); los máficos son hornblenda y biotita, que varía entre 5 y 10% del total de la roca, y ocasionalmente piroxeno (augita); alguno de ellos predomina por sectores no muy bien establecidos. Apatito, circón, esfena y opacos son los minerales accesorios más frecuentes; los secundarios son calcita, saussurita, clorita, epidota y leucoxeno.

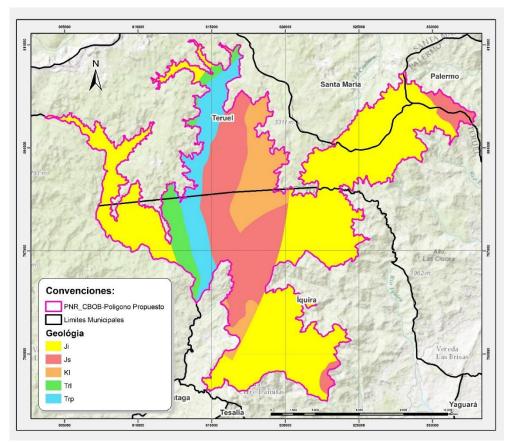


Figura 20. Mapa de geología.

7.3 HIDROGRAFÍA

7.3.1 Zonificación hidrológica departamental

De acuerdo con el IDEAM (2013) el departamento del Huila se encuentra dividido por trece (13) subzonas hidrográficas, áreas delimitadas por el HIMAT en 1978 bajo resolución 0337, (Figura 21). Teniendo en cuenta la sectorización descrita, la CAM a través del ERA (Corporación Autónoma Regional del Alto Magdalena – CAM, 2017) dividió el territorio de su jurisdicción en 564 subcuencas y/o microcuencas, circunscritas dentro de cada una de las subzonas.

En el polígono propuesto para Cerro Banderas – Ojo Blanco, se encuentran tres (3) de las subzonas hidrográficas definidas por el IDEAM: 1) 2105- Río Páez, 2) 2108- Río Íquira y Yaguará y 3) 2112 Río Bache. Dentro del área de las subzonas descritas,

interseca el área de 16 de las subcuencas y/o microcuencas definidas por la Evaluación Regional del Agua (Figura 21 y Tabla 17).

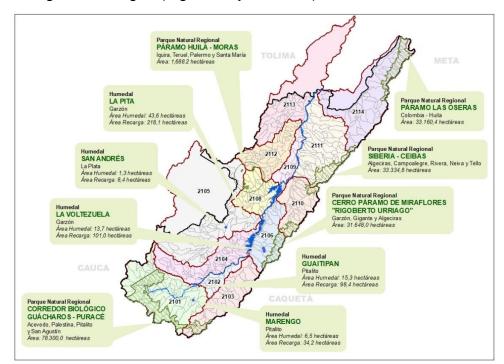


Figura 21. División hidrográfica, áreas protegidas y humedales del departamento del Huila.

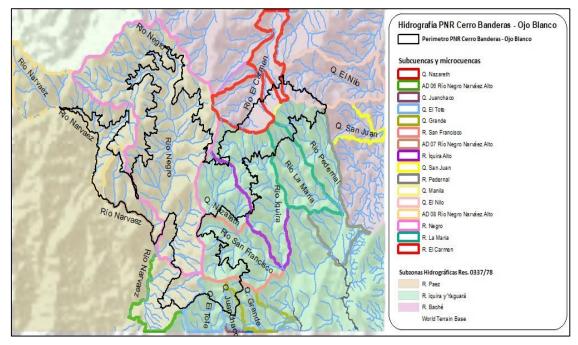


Figura 22. Subcuencas hidrográficas asociadas al polígono propuesto para Cerro Banderas – Ojo Blanco.

Tabla 17. Subcuencas y/o microcuencas circunscritas en Cerro Banderas – Ojo Blanco

Código Subzona Hidrográfica	Subzona Hidrográfica	Identificación ERA	Subcuenca y/o Microcuenca
2105	Rio Páez	9	AD 06 RIO NEGRO NARVAEZ_alto
2105	Rio Páez	10	AD 07 RIO NEGRO NARVAEZ
2105	Rio Páez	11	AD 08 RIO NEGRO NARVAEZ
2105	Rio Páez	62	R. NEGRO
2108	Rio Yaguará	15	Q. DE JUANCHACO
2108	Rio Yaguará	23	Q. EL TOTE
2108	Rio Yaguará	24	Q. GRANDE
2108	Rio Yaguará	32	Q. NAZARETH
2108	Rio Yaguará	34	R. IQUIRA_ALTO
2108	Rio Yaguará	36	R. LA MARIA
2108	Rio Yaguará	39	R. PEDERNAL_ALTO
2108	Rio Yaguará	41	R. SAN FRANCISCO
2112	Rio Bache	12	Q. EL NILO
2112	Rio Bache	29	Q. MANILA
2112	Rio Bache	35	Q. SAN JUAN
2112	Rio Bache	43	R. EL CARMEN

Fuente: (Corporación Autónoma Regional del Alto Magdalena – CAM, 2017).

7.3.2 Descripción Hidrográfica municipal

7.3.2.1 Municipio de Íquira

El municipio de Íquira tiene un área de 532 km² aproximadamente. Hidrológicamente se encuentra ubicado en la Gran cuenca de los Ríos magdalena y Cauca, específicamente en la confluencia de las subzonas hidrográficas 2105 — Río Páez, que abarca el 26,47% del área municipal y 2108 — Río Yaguará, que representa el 73,53% de la superficie restante. Su hidrografía se compone, de acuerdo con la subdivisión realizada por él ERA, de 22 subcuencas y/o microcuencas. Estas se listan en la en la Tabla 18.

Tabla 18. Composición hídrica del municipio de Íquira (Huila)

Código Subzona Hidrográfica	Subzona Hidrográfica	Identificación ERA	Subcuenca y/o Microcuenca
2105	Rio Páez	10	AD 07 RIO NEGRO NARVAEZ
2105	Rio Páez	11	AD 08 RIO NEGRO NARVAEZ
2105	Rio Páez	62	R. NEGRO
2105	Rio Páez	9	AD 06 RIO NEGRO NARVAEZ_alto
2108	Rio Yaguará	40	R. PEDERNAL_BAJO
2108	Rio Yaguará	42	R. YAGUARA_alto
2108	Rio Yaguará	18	Q. EL CACHINGO
2108	Rio Yaguará	32	Q. NAZARETH
2108	Rio Yaguará	31	Q. LA SARDINA-YAGUARA

Código Subzona Hidrográfica	Subzona Hidrográfica	Identificación ERA	Subcuenca y/o Microcuenca
2108	Rio Yaguará	30	Q. LA SALADA
2108	Rio Yaguará	37	R. MACURI
2108	Rio Yaguará	22	Q. EL GUAMAL
2108	Rio Yaguará	13	Q. CARAGUAJA
2108	Rio Yaguará	38	R. PACARNI
2108	Rio Yaguará	28	Q. LA CAR
2108	Rio Yaguará	15	Q. DE JUANCHACO
2108	Rio Yaguará	23	Q. EL TOTE
2108	Rio Yaguará	24	Q. GRANDE
2108	Rio Yaguará	27	Q. LA CANADA
2108	Rio Yaguará	41	R. SAN FRANCISCO
2108	Rio Yaguará	34	R. IQUIRA_ALTO
2108	Rio Yaguará	35	R. IQUIRA_BAJO

Por su ubicación y topografía, su actividad agrícola se centra en cultivos café y ganadería extensiva. Dado lo anterior, el agua de los diferentes afluentes intervenidos se usa para riego, consumo humano y animal.

7.3.2.2 Municipio de Teruel

El municipio de Teruel tiene un área de 498.7 km2 aproximadamente. Hidrológicamente se encuentra ubicado en la Gran cuenca de los Ríos Magdalena y Cauca, específicamente en la confluencia de las subzonas hidrográficas 2105 – Rio Páez, que abarca el 54.32% del área municipal, 2108 – Rio Yaguará, abarca el 31.95%, 2109 – Juncal y otros ríos directos al Magdalena, abarca el 0.01% y 2112 – Rio Bache, que representa el 13.72% de la superficie restante. Su hidrografía se compone, de acuerdo con la subdivisión realizada por él ERA, de 29 subcuencas y/o microcuencas. Estas se listan en la Tabla 19.

Tabla 19. Composición hídrica del municipio de Teruel (Huila)

Código Subzona Hidrográfica	Subzona Hidrográfica	Identificación ERA	Subcuenca y/o Microcuenca
2105	Rio Páez	10	AD 07 RIO NEGRO NARVAEZ
2105	Rio Páez	13	AD SIMBOLA 04
2105	Rio Páez	12	AD SIMBOLA 03
2105	Rio Páez	11	AD 08 RIO NEGRO NARVAEZ
2105	Rio Páez	62	R. NEGRO
2105	Rio Páez	14	AD SIMBOLA 05
2108	Rio Yaguará	40	R. PEDERNAL_BAJO
2108	Rio Yaguará	33	Q. PAPAYALA

Código Subzona		Identificación	
Hidrográfica	Subzona Hidrográfica	ERA	Subcuenca y/o Microcuenca
2108	2108 Rio Yaguará		Q. CHICHAYACO
2108	Rio Yaguará	32	Q. NAZARETH
2108	Rio Yaguará	16	Q. DEL MEDIO
2108	Rio Yaguará	27	Q. LA CANADA
2108	Rio Yaguará	19	Q. EL CAPOTE
2108	Rio Yaguará	34	R. IQUIRA_ALTO
2108	Rio Yaguará	39	R. PEDERNAL_ALTO
2108	Rio Yaguará	36	R. LA MARIA
2108	Rio Yaguará	12	Q. BEBERECIO
2108	Rio Yaguará	35	R. IQUIRA_BAJO
2109	Juncal y otros Ríos directos al Magdalena	18	Q. LA BOBA
2112	Rio Bache	16	Q. EL RINCON
2112	Rio Bache	11	Q. EL IGUA
2112	Rio Bache	42	R. BACHECITO
2112	Rio Bache	35	Q. SAN JUAN
2112	Rio Bache	12	Q. EL NILO
2112	Rio Bache	34	Q. SAN JERONIMO
2112	Rio Bache	44	R. TUNE_ALTO
2112	Rio Bache	40	R. BACHE_ALTO
2112	Rio Bache	27	Q. LA URRIAGA
2112	Rio Bache	43	R. EL CARMEN

Por su ubicación y topografía, su actividad agrícola se centra en cultivos café, plátano, yuca, arroz, maíz, frutales, ganadería y piscicultura. Dado lo anterior, el agua de diferentes afluentes intervenidos se usa para riego, consumo humano y animal.

7.3.2.3 Municipio de Palermo

El municipio de Palermo tiene un área de 92,28 km² aproximadamente. Hidrológicamente se encuentra ubicado en la Gran cuenca de los Ríos Magdalena y Cauca, específicamente en la confluencia de las subzonas hidrográficas 2106 – Ríos directos al Magdalena (md), que comprenden el 0,04% del área municipal, 2108 – Rio Yaguará, que abarca el 0,01% del área, 2109 – Juncal y otros directos al Magdalena, que abarca el 34,20% del municipio, 2111 – Rio Fortalecillas y otros, que abarca el 0,02% del área, 2112 – Rio Bache, que abarca el 58,50% del área y 2113 – Rio Aipe, Rio Chenche y otros directos al Magdalena, que representa el 7,23% de la superficie restante. Su hidrografía se compone, de acuerdo con la subdivisión realizada por él ERA, de 53 subcuencas y/o microcuencas. Estas se listan en la en la Tabla 20.

Tabla 20. Composición hídrica del municipio de Palermo (Huila)

Tabla 20. Composicion hidrica del municipio de Palermo (Huila)							
Código	0.1	Identificación	O. I / . Mi				
Subzona	Subzona Hidrográfica	ERA	Subcuenca y/o Microcuenca				
Hidrográfica							
2106	Ríos directos Magdalena (md)	17	AD 75 MAGDALENA_alto				
2106	Ríos directos Magdalena (md)	16	AD 75 MAGDALENA_bajo				
2108	Rio Yaguará	1	AD 14 MAGDALENA				
2108	Rio Yaguará	39	R. PEDERNAL_ALTO				
2109	Juncal y otros Ríos directos al Magdalena	9	AD 12 MAGDALENA				
2109	Juncal y otros Ríos directos al Magdalena	15	Q. EL PINAL				
2109	Juncal y otros Ríos directos al Magdalena	12	Q. BUSIRACO				
2109	Juncal y otros Ríos directos al Magdalena	5	AD 08 MAGDALENA				
2109	Juncal y otros Ríos directos al Magdalena	10	AD 13 MAGDALENA				
2109	Juncal y otros Ríos directos al Magdalena	20	Q. PAPAGALLO				
2109	Juncal y otros Ríos directos al Magdalena	7	AD 10 MAGDALENA				
2109	Juncal y otros Ríos directos al Magdalena	16	Q. GALLINAZO				
2109	Juncal y otros Ríos directos al Magdalena	18	Q. LA BOBA				
2109	Juncal y otros Ríos directos al Magdalena	8	AD 11 MAGDALENA				
2109	Juncal y otros Ríos directos al Magdalena	6	AD 09 MAGDALENA				
2109	Juncal y otros Ríos directos al Magdalena	13	Q. CUISINDE				
2109	Juncal y otros Ríos directos al Magdalena	19	Q. LA SARDINATA				
2111	Rio Fortalecillas y otros	1	AD 76 MAGDALENA				
2111		2					
	Rio Fortalecillas y otros		AD 77 MAGDALENA				
2111	Rio Fortalecillas y otros	3	AD 78 MAGDALENA				
2111	Rio Fortalecillas y otros	4	AD 79 MAGDALENA				
2111	Rio Fortalecillas y otros	5	AD 80 MAGDALENA				
2111	Rio Fortalecillas y otros	56	R. LAS CEIBAS_Bajo				
2111	Rio Fortalecillas y otros	53	R. FRIO RIVERA				
2112	Rio Bache	16	Q. EL RINCON				
2112	Rio Bache	46	R. YAYA				
2112	Rio Bache	25	Q. LA REMUDA				
2112	Rio Bache	17	Q. FALDIQUERA				
2112	Rio Bache	35	Q. SAN JUAN				
2112	Rio Bache	4	Q. CHIMBORAZO				
2112	Rio Bache	12	Q. EL NILO				
2112	Rio Bache	22	Q. LA GUAGUA				
2112	Rio Bache	36	Q. SAN MIGUEL				
2112	Rio Bache	32	Q. SAN BENITO				
2112	Rio Bache	13	Q. EL OSO				
2112	Rio Bache	21	Q. LA GUADUALOSA				
2112	Rio Bache	3	Q. CASTANAL				
2112	Rio Bache	28	Q. LAS MORAS				
2112	Rio Bache	2	Q. AMBORCO				
2112	Rio Bache	10	Q. EL FRAILE				
2112	Rio Bache	15	Q. EL POTRERO				
2112	Rio Bache	18	Q. GUAYABA				
2112	Rio Bache	33	Q. SAN FRANCISCO_NEIVA				
2112	Rio Bache	9	Q. EL CHIFLON				
2112	Rio Bache	45	R. TUNE_BAJO				
2112	Rio Bache	41	R. BACHE_BAJO				
2112	Rio Bache	44	R. TUNE_ALTO				
2112	Rio Bache	27	Q. LA URRIAGA				
2112	Rio Bache	43	R. EL CARMEN				
2112		43	N. EL CARIVIEN				
2113	Rio Aipe, Rio Chenche y otros directos al Magdalena	43	R. AIPE				
2113	Rio Aipe, Rio Chenche y otros directos al Magdalena	14	Q. AIPECITO				

Código Subzona Hidrográfica	Subzona Hidrográfica	Identificación ERA	Subcuenca y/o Microcuenca
2113	Rio Aipe, Rio Chenche y otros directos al Magdalena	31	Q. LOS ORGANOS
2113	Rio Aipe, Rio Chenche y otros directos al Magdalena	12	Q. AGUACHE

Por su ubicación y topografía, su actividad económica se centra en la ganadería y la minería, de la primera sobresalen los cultivos de arroz, café, sorgo, cacao, plátano, yuca, maíz, fríjol, frutales; especialmente lulo, tomate y mora; de la segunda la población bovina día a día va en aumento; y de la tercera, las explotaciones de petróleo, calizas y mármol son llamativas.

Dado lo anterior, el agua de diferentes afluentes intervenidos se usa para riego, consumo humano y animal.

7.3.2.4 Municipio de Santa María

El municipio de Santa María tiene un área de 313,7 km² aproximadamente. Hidrológicamente se encuentra ubicado en la Gran cuenca de los Ríos Magdalena y Cauca, específicamente en la confluencia de las subzonas hidrográficas 2105 — Rio Páez, que comprende el 15,09% del área municipal, 2108 — Rio Yaguará, que abarca el 11,13% del área, 2112 — Rio Bache, que abarca el 56,33% del área y 2113 — Rio Aipe, Rio Chenche y otros directos al Magdalena que representa el 17,45% de la superficie restante. Su hidrografía se compone, de acuerdo con la subdivisión realizada por él ERA, de 27 subcuencas y/o microcuencas. Estas se listan en la en la Tabla 21.

Tabla 21. Composición hídrica del municipio de Santa María (Huila)

	· · · · · · · · · · · · · · · · · · ·		
Código Subzona	Subzona Hidrográfica	Identificación	Subcuenca y/o Microcuenca
2105	05 Rio Páez		R. NEGRO
2108	2108 Rio Yaguará		R. IQUIRA_ALTO
2108	2108 Rio Yaguará		R. PEDERNAL_ALTO
2108	2108 Rio Yaguará		R. LA MARIA
2112	Rio Bache	46	R. YAYA
2112	Rio Bache	42	R. BACHECITO
2112	2112 Rio Bache		Q. MANILA
2112	Rio Bache	5	Q. EL AGUILA

Código Subzona	Subzona Hidrográfica	Identificación	Subcuenca y/o Microcuenca
2112	Rio Bache	37	Q. SANTA LUCIA
2112			Q. CHIMBORAZO
2112	Rio Bache	12	Q. EL NILO
2112	Rio Bache	36	Q. SAN MIGUEL
2112	Rio Bache	34	Q. SAN JERONIMO
2112	Rio Bache	32	Q. SAN BENITO
2112	Rio Bache	8	Q. EL CEDRAL
2112	Rio Bache	13	Q. EL OSO
2112	2112 Rio Bache		Q. LA CRUZADA
2112	2112 Rio Bache		Q. EL ALBADAN_STA_MARIA
2112	Rio Bache	21	Q. LA GUADUALOSA
2112	Rio Bache	23	Q. LA PIZARRA
2112	Rio Bache	26	Q. LA SOLEDAD
2112	Rio Bache	20	Q. LA ESPERANZA
2112	Rio Bache	28	Q. LAS MORAS
2112	Rio Bache	41	R. BACHE_BAJO
2112	Rio Bache	40	R. BACHE_ALTO
2112	Rio Bache	43	R. EL CARMEN
2113	Rio Aipe, Rio Chenche y otros directos al Magdalena	43	R. AIPE

Por su ubicación y topografía, su actividad económica se centra en la agricultura, en la que se destacan las producciones de café, caña de azúcar, fríjol, maíz, arveja, plátano, yuca, arracacha, ajo y frutales; de la ganadería y de la explota forestal.

Dado lo anterior, el agua de diferentes afluentes intervenidos se usa para riego, piscicultura, consumo humano y animal.

7.4 HIDROLOGÍA

7.4.1 Determinaciones hidrológicas

Como se mencionó en la metodología, con el análisis de los registros hidroclimatológicos, se estimaron los caudales de cada subcuenca y/o microcuenca y a su vez el de la subzona hidrográfica HIMAT (SZH) para los años hidrológicos medio, seco y húmedo. En la Tabla 22 se listan los resultados de la evaluación para las subzonas hidrográficas teniendo en cuenta el código de identificación establecido por el HIMAT en la resolución 0337 de 1978.

Tabla 22. Valores de oferta hídrica por subzona hidrográfica

			Oferta Hídrica Total Superficial - (m³/s)			
SUBZONAS HIDROGRÁFICAS	ÁREA (Km²)	NUMERO DE SUBCUENCAS	Año Hidrológico Medio - AHM	Año Hidrológico Seco - AHS	Año Hidrológico Húmedo - AHH	
2105-Rio Páez	2.427	65,0	78,5	26,7	130,5	
2106-Rios directos Magdalena (md)	1.144	38,0	23,0	9,2	53,2	
2108-Rio Yaguará y río Íquira	941	43,0	25,0	7,1	60,8	
2109-Juncal y otros Ríos directos al Magdalena	450	20,0	11,8	3,4	28,0	
2111-Rio Fortalecillas y otros	2.170	62,0	45,4	8,8	99,3	
2112-Rio Bache	1.157	46,0	30,5	8,7	84,9	
2113-Rio Aipe, Rio Chenche y otros directos al Magdalena	1.077	44,0	29,1	5,4	74,3	
Total	9.366	318	243,3	69,3	531	

7.4.2 Fuentes hídricas de Cerro Banderas - Ojo Blanco

La región Cerro Banderas – Ojo Blanco, es una importante reserva hídrica y sitio de nacimiento de cuerpos de agua que son utilizados en riego agrícola y ante todo para consumo humano en numerosos acueductos veredales. Además, el área comprende importantes coberturas en ecosistemas naturales, que han sido intervenidos por el hombre en pro de la ampliación de la frontera agrícola y que a la postre lo han degradado los ecosistemas; no obstante, con su recuperación esta área presenta potencial para el desarrollo de investigación científica, ecoturismo e interpretación ambiental, ofreciendo escenarios para el deleite del turista y sectores para realizar actividades de recreación pasiva. Estas áreas de bosque natural son, en gran medida, el objeto de conservación, que a su vez brindan seguridad y sostenibilidad a las poblaciones faunísticas que dependen de sus recursos naturales. De esta manera el polígono propuesto para Cerro Banderas – Ojo Blanco, se convierte en uno de los mejores atractivos para el desarrollo de la región donde se benefician aproximadamente 67.754 habitantes de los cuatro (4) municipios, con las siguientes subzonas hidrográficas:

7.4.2.1 Río Páez.

Esta subzona hidrográfica comprende en el departamento, los municipios de Teruel, Íquira, Nátaga, Tesalia, Paicol, Pital, La Plata y La Argentina. Tiene un área de 2427 Km² y la conforman 65 subcuencas y/o microcuencas, de acuerdo con la división establecida por él ERA. Los principales tributarios son: Río Páez, Río La plata, Río Loro, Río Negro, Q. El Aladao, Q. Moscopan, Q. Grande, Q. Ríecito y Q. Motilón. El caudal en su desembocadura asciende a 78,48, 26,74 y 130,48 m³/s, para los años hidrológicos medio, seco y húmedo, respectivamente. En la Tabla 23, se presenta el área y caudal de las subcuencas y/o microcuencas.

Tabla 23. Área v caudal de las subcuencas que conforman la SZH 2105 – Rio Páez.

SUB-	23. Area y caudal de las subcu SUBCUENCA	AREA		ESEMBOCADUR	
ZONA	JUDGUENGA	SUBCUENCA (ha)	AHM	AHS	A (ms/seg) AHH
2105	Rio Páez	242.650,59	78,48	26,737	130,48
1	AD 01 PAEZ	3.173,57	1,08	0,437	1,28
2	AD 01 RIO NEGRO NARVAEZ	37,53	0,02	0,005	0,02
3	AD 02 PAEZ	410,65	0,13	0,061	0,15
4	AD 02 RIO NEGRO NARVAEZ	256,19	0,10	0,031	0,13
5	AD 03 RIO NEGRO NARVAEZ	1.977,71	0,73	0,196	1,14
6	AD 04 RIO NEGRO NARVAEZ	187,05	0,07	0,023	0,11
7	AD 05 RIO NEGRO NARVAEZ	1.257,75	0,48	0,146	0,71
8	AD 06 RIO NEGRO NARVAEZ_bajo	1.440,25	0,54	0,167	0,72
9	AD 06 RIO NEGRO NARVAEZ_alto	3.722,41	1,36	0,430	1,85
10	AD 07 RIO NEGRO NARVAEZ	2.041,78	0,67	0,199	1,06
11	AD 08 RIO NEGRO NARVAEZ	6.236,00	2,00	0,567	3,20
12	AD SIMBOLA 03	769,02	0,25	0,068	0,59
13	AD SIMBOLA 04	1.481,34	0,47	0,130	1,14
14	AD SIMBOLA 05	4.072,89	1,32	0,349	3,14
15	Q. AGUABLANCA	1.443,37	0,48	0,218	0,88
16	Q. AGUABONITA	1.354,89	0,44	0,175	0,85
17	Q. AGUABONITA_2	1.409,22	0,48	0,196	0,88
18	Q. AGUACATAL	1.373,24	0,42	0,179	0,50
19	Q. AGUANEGRA	3.751,93	1,18	0,484	2,35
20	Q. BARBILLAS	1.507,38	0,44	0,180	0,49
21	Q. CHILVANEJO	1.036,57	0,38	0,098	0,47
22	Q. DE CUEVAS	3.234,04	0,97	0,418	1,16
23	Q. DE GOLONDRINAS	579,08	0,21	0,060	0,30
24	Q. DE TOPA	2.252,69	0,69	0,289	0,85
25	Q. DEL PUEBLO	1.039,03	0,30	0,095	0,66
26	Q. EL CARMELO	2.561,21	0,81	0,432	0,81
27	Q. EL CONGRESO	1.234,68	0,42	0,145	0,85
28	Q. EL ESPINAL	2.170,34	0,81	0,183	1,06
29	Q. EL ESTORAQUE	426,91	0,15	0,047	0,21
30	Q. EL PESCADO	1.778,93	0,59	0,222	1,11
31	Q. EL PUEBLO	636,79	0,27	0,067	0,42
32	Q. EL SALADO	8.765,26	4,93	1,834	10,14
33	Q. EL SALERO	1.153,97	0,40	0,104	0,54
34	Q. GRANDE	6.414,22	3,69	0,641	5,24
35	Q. GUAYABITO	2.837,95	1,07	0,225	1,46
36	Q. LA AVERIA	2.216,08	0,82	0,187	1,19

SUB-	SUBCUENCA	AREA	CAUDAL D	ESEMBOCADUR	RA (m3/seg)
37	Q. LA CANADA	3.583,32	1,20	0,316	1,56
38	Q. LA CANDELARIA	4.504,73	1,50	0,575	2,63
39	Q. LA CHORRERA	2.691,94	0,89	0,370	1,67
40	Q. LA ESMERALDA	1.061,77	0,34	0,145	0,66
41	Q. LA ESMERALDA_2	2.594,90	0,71	0,207	1,66
42	Q. LA FLORIDA	740,68	0,25	0,097	0,47
43	Q. LA LAJA	567,09	0,20	0,055	0,29
44	Q. LA MONA	2.550,13	0,94	0,353	1,70
45	Q. LA PLATA	6.020,80	1,87	0,685	3,59
46	Q. LA PRINGAMOSA	1.312,99	0,52	0,143	0,81
47	Q. LA SALADA	1.253,03	0,40	0,115	0,48
48	Q. LA VENTA	7.331,40	2,02	0,595	2,75
49	Q. LA ZAPATERA	1.218,06	0,39	0,165	0,46
50	Q. LAS AGUILAS	369,14	0,10	0,032	0,22
51	Q. LAS LAJAS	1.924,67	0,64	0,257	1,41
52	Q. LAS TOLDAS	501,19	0,15	0,053	0,30
53	Q. MOSCOPAN	8.482,56	4,86	1,994	9,35
54	Q. MOTILON	8.099,93	3,05	0,770	4,37
55	Q. PESCADOR	3.808,26	0,99	0,320	2,17
56	Q. RIECITO	3.140,69	3,54	1,296	6,77
57	Q. SAN ISIDRO	3.015,38	0,89	0,349	1,08
58	R. LA PLATA_bajo	9.830,13	42,93	17,173	77,71
59	R. LA PLATA_alto	35.877,91	37,26	14,663	71,37
60	R. LORO ALTO	5.207,94	1,78	0,647	3,36
61	R. LORO BAJO	16.740,53	13,56	4,806	26,64
62	R. NEGRO	18.226,15	13,33	3,800	20,96
63	R. PAEZ_bajo	7.776,76	78,48	26,737	130,48
64	R. PAEZ_alto	4.766,06	65,09	23,785	112,25
65	R. QUEBRADON	3.210,53	1,08	0,405	1,99

7.4.2.2 Río Yaguará y otros.

Esta subzona hidrográfica comprende en el departamento, los municipios de Teruel, Yaguará, Íquira, Nátaga y Tesalia. Tiene un área de 941.308 Km² y la conforman 43 subcuencas y/o microcuencas, de acuerdo con la división establecida por él ERA. Los principales tributarios son: Río Yaguará, Río Pedernal, Río Pacarní, Río Íquira y Rio Macurí. El caudal en su desembocadura asciende a 25,03, 7,09 y 60,79 m³/s, para los años hidrológicos medio, seco y húmedo, respectivamente. En la Tabla 24, se presenta el área y caudal de las subcuencas y/o microcuencas.

Tabla 24. Área y caudal de las subcuencas que conforman la SZH 2108 – Rio Yaguará v otros.

	,	·•				
SUBZONA SUBCUENCA		SUBCUENCA	AREA	CAUDAL I	DESEMBOCADUR	A (m3/seg)
			SUBCUENCA (ha)	AHM	AHS	AHH
	2108	Rio Yaguará	94.130,80	25,03	7,087	60,79
	1	AD 14 MAGDALENA	1.289,71	0,30	0,125	0,49
Г	2	AD 15 MAGDALENA	75,91	0,02	0,008	0,03
	3	AD 16 MAGDALENA	286,70	0,08	0,031	0,13

SUBZONA	SUBCUENCA	AREA	CAUDAL E	DESEMBOCADURA	(m3/seg)
4	AD 17 MAGDALENA	826,81	0,28	0,018	0,48
5	AD 18 MAGDALENA	450,60	0,16	0,016	0,28
6	AD 19 MAGDALENA	4.849,97	1,49	0,302	2,44
7	AD 20 MAGDALENA	3.649,15	0,99	0,409	1,43
8	AD 21 MAGDALENA	27,79	0,01	0,004	0,01
9	AD 22 MAGDALENA	478,52	0,12	0,063	0,12
10	EMBALSE DE BETANIA	4.320,83	0,89	0,416	1,32
11	Q. AGUADULCE YAGUARA	474,92	0,14	0,049	0,25
12	Q. BEBERECIO	885,12	0,27	0,096	0,74
13	Q. CARAGUAJA	3.455,67	0,97	0,353	1,60
14	Q. CHICHAYACO	1.384,49	0,42	0,179	0,62
15	Q. DE JUANCHACO	1.662,99	0,49	0,197	1,20
16	Q. DEL MEDIO	1.278,14	0,36	0,129	0,56
17	Q. EL CACHIMBO	1.025,91	0,30	0,096	0,72
18	Q. EL CACHINGO	1.034,76	0,34	0,140	0,74
19	Q. EL CAPOTE	1.481,72	0,41	0,152	0,64
20	Q. EL CARBON	2.202,93	0,63	0,202	1,49
21	Q. EL DAVE	1.740,25	0,48	0,154	1,25
22	Q. EL GUAMAL	674,22	0,22	0,090	0,48
23	Q. EL TOTE	2.412,96	0,67	0,265	1,61
24	Q. GRANDE	1.645,50	0,47	0,160	1,20
25	Q. GUASIMALITO	657,33	0,20	0,071	0,48
26	Q. LA BUITRERA	1.448,42	0,40	0,143	0,54
27	Q. LA CANADA	1.945,36	0,62	0,267	1,46
28	Q. LA CAR	1.523,17	0,53	0,128	1,59
29	Q. LA COLORADA	1.930,12	0,54	0,170	1,31
30	Q. LA SALADA	2.246,07	0,72	0,239	1,99
31	Q. LA SARDINA-YAGUARA	1.097,43	0,30	0,124	0,40
32	Q. NAZARETH	2.708,26	0,75	0,249	2,13
33	Q. PAPAYALA	1.089,60	0,34	0,154	0,76
34	R. IQUIRA_ALTO	5.459,51	3,37	1,139	9,58
35	R. IQUIRA_BAJO	2.740,02	3,05	1,269	11,24
36	R. LA MARIA	2.997,31	0,85	0,184	2,69
37	R. MACURI	5.006,85	1,48	0,420	3,61
38	R. PACARNI	4.231,84	2,57	0,949	6,12
39	R. PEDERNAL_ALTO	4.948,54	3,09	0,866	8,86
40	R. PEDERNAL_BAJO	1.832,14	4,50	0,694	11,63
41	R. SAN FRANCISCO	4.142,28	1,89	0,674	5,19
42	R. YAGUARA_alto	10.176,22	12,09	3,813	34,21
43	R. YAGUARA bajo	334,76	17,69	4,566	49,45

7.4.2.3 Río Bache.

Esta subzona hidrográfica comprende en el departamento, los municipios de Aipe, Santa María y Palermo. Tiene un área de 1157.4612 Km² y la conforman 46 subcuencas y/o microcuencas, de acuerdo con la división establecida por el ERA. Los principales tributarios son: Río Bache, Rio Yaya, Rio Tune, Rio el Carmen, Quebrada San Miguel, Quebrada Las Moras y Quebrada El Potrero. El caudal en su desembocadura asciende a 30,53; 8,713 y 84,89 m³/s, para los años hidrológicos

medio, seco y húmedo, respectivamente. En la Tabla 25, se presenta el área y caudal de las subcuencas y/o microcuencas.

Tabla 25. Área y caudal de las subcuencas que conforman la SZH 2108 – Rio Bache.

Tabla 25.	Área y caudal de las sub	cuencas que conform	an la SZH .	2108 – Rio	Bache.
SUBZONA	SUBCUENCA	AREA SUBCUENCA (Ha)			
			AHM	AHS	AHH
2112	Rio Bache	115.746,12	30,53	8,713	84,89
1	Q. AGUADULCE NEIVA	689,34	0,19	0,062	0,48
2	Q. AMBORCO	1.325,91	0,33	0,129	0,86
3	Q. CASTANAL	523,39	0,21	0,057	0,66
4	Q. CHIMBORAZO	497,74	0,16	0,070	0,38
5	Q. EL AGUILA	418,64	0,12	0,045	0,32
6	Q. EL ALBADAN_STA_MARIA	1.094,72	0,31	0,112	0,83
7	Q. EL ARRAYAN	1.274,35	0,38	0,074	1,23
8	Q. EL CEDRAL	1.481,34	0,43	0,157	1,11
9	Q. EL CHIFLON	1.391,96	0,45	0,103	1,13
10	Q. EL FRAILE	2.322,40	0,73	0,214	2,10
11	Q. EL IGUA	1.652,82	0,56	0,211	1,37
12	Q. EL NILO	4.510,38	1,33	0,303	3,59
13	Q. EL OSO	2.057,10	0,65	0,239	1,74
14	Q. EL PALMAR	2.447,62	0,84	0,224	2,06
15	Q. EL POTRERO	3.620,80	1,08	0,248	2,95
16	Q. EL RINCON	1.359,53	0,40	0,155	0,98
17	Q. FALDIQUERA	2.721,87	0,88	0,295	2,10
18	Q. GUAYABA	1.229,36	0,36	0,119	0,89
19	Q. LA CRUZADA	507,82	0,12	0,044	0,31
20	Q. LA ESPERANZA	668,70	0,19	0,070	0,47
21	Q. LA GUADUALOSA	727,45	0,23	0,085	0,57
22	Q. LA GUAGUA	3.813,86	1,02	0,300	2,57
23	Q. LA PIZARRA	862,86	0,27	0,095	0,68
24	Q. LA RAYA	953,79	0,26	0,066	0,78
25	Q. LA REMUDA	3.090,13	0,97	0,297	2,50
26	Q. LA SOLEDAD	954,73	0,25	0,095	0,69
27	Q. LA URRIAGA	1.194,26	0,36	0,109	0,88
28	Q. LAS MORAS	3.636,61	1,16	0,431	2,79
29	Q. MANILA	526,41	0,14	0,054	0,41
30	Q. MERCADERES	403,36	0,08	0,023	0,22
31	Q. PENAS BLANCAS	937,64	0,22	0,077	0,60
32	Q. SAN BENITO	460,99	0,12	0,043	0,33
33	Q. SAN FRANCISCO NEIVA	1.498,73	0,42	0,110	1,14
34	Q. SAN JERONIMO	2.197,82	0,61	0,234	1,64
35	Q. SAN JUAN	1.602,14	0,49	0,136	1,26
36	Q. SAN MIGUEL	3.530,98	1,05	0,438	2,62
37	Q. SANTA LUCIA	321,50	0,09	0,036	0,22
38	Q. SANTA MARIA	2.160,93	0,54	0,161	1,24
39	Q. VENTANAS	2.307,53	0,60	0,154	1,69
40	R. BACHE_ALTO	8.090,70	8,46	3,307	22,33
41	R. BACHE_BAJO	21.307,84	30,53	8,713	84,89
42	R. BACHECITO	1.973,99	0,50	0,205	1,40
43	R. EL CARMEN	4.249,10	2,46	0,938	6,73
44	R. TUNE_ALTO	7.945,07	4,86	0,925	13,32
45	R. TUNE_BAJO	1.445,84	5,45	1,701	14,50
46	R. YAYA	7.756,09	6,00	1,682	16,03
.0		111 00,00	5,55	.,552	10,00

7.4.2.4 Subcuencas y/o microcuencas

El área del polígono propuesto para Cerro Banderas – Ojo Blanco, comprende el área total o parcial de las subcuencas y/o microcuencas de las quebradas Nazareth, Juanchaco, El Tote, Grande, San Juan, Manila, El Nilo y de los ríos Negro Narváez, Íquira Alto, Pedernal, Negro, La María y El Carmen.

7.4.3 Parámetros para el polígono propuesto en CBOB

Haciendo uso de la cartografía del ERA, se determinó el área total de cada una de las subcuencas y/o microcuencas y el área intersecada por el del polígono propuesto, datos con los cuales se estimó la escorrentía acumulada total y parcial y la capacidad de producción de agua para cada caso, teniendo en cuenta el comportamiento de normal de las precipitaciones y los eventos extremos. En la Tabla 26, se presentan los resultados obtenidos de la evaluación.

El área del polígono propuesto para Cerro Banderas – Ojo Blanco, cubre parcial o totalmente (16) subcuencas y/o microcuencas. El 53,62% del área, hace parte de la SZH 2105 – Rio Páez, el 20,80% hace parte de SZH 2108 – Rio Yaguará y el 25,58% restante a la SZH 2112 – Río Bache, división que se debe a la ubicación del polígono propuesto en la cima de cordillera central. El área de cada SZH corresponde en su interior al 6,45% de la superficie de la SZH 2105 – Río Páez, 5,38% de la superficie de la SZH 2108 – Rio Yaguará y al 2,28% de la SZH 2112 – Río Bache. Así mismo, en la SZH 2105 – Río Páez se concentran (4) subcuencas y/o microcuencas, en la SZH 2108 – Rio Yaguará se concentran (8) y las demás lo hacen en la SZH 2112 – Río Bache, situación que obedece a una mayor pendiente en el estribo derecho de la cordillera.

De las subcuencas y/o microcuencas que se encuentran en el polígono propuesto para Cerro Banderas – Ojo Blanco, las principales en la SZH 2105 – Río Páez corresponden a los ríos Negro Narváez y Rio Negro, en la SZH 2108 – Rio Yaguará, a los ríos Íquira, La María, Pedernal y la quebrada Nazareth y en la SZH 2112 – Rio Bache, a las quebradas El Nilo, Manila, San juan y el Río El Carmen.

La oferta hídrica total en la SZH 2105 – Río Páez, asciende a 3,13 m³/s, 1,07 m³/s y 5,21 m³/s, para los años hidrológicos medio, seco y húmedo, respectivamente. En la SZH 2108 – Rio Yaguará la oferta hídrica total es de 1,24 m³/s, 0,35 m³/s y 3,02 m³/s, respectivamente y para la SZH 2112 – Rio Bache la oferta hídrica total es de 0,40 m³/s, 0,11 m³/s y 1,12 m³/s, respectivamente. Los caudales descritos corresponden a un 3,99% del total producido en la SZH 2105, al 4,97% del total producido en la SZH 2108 – Rio Yaguará y al 1,32% del total producido en la SZH 2112 – Río Bache.

La evaluación de los eventos extremos permitió establecer que en las épocas de estiaje fuerte o con presencia del ENOS (El Niño o la Niña-Oscilación del Sur), los caudales sufren una reducción del 66%, con respecto al año hidrológico medio (AHM). Por su parte, la época estival y su afectación por el ENOS, logra aumentar la oferta hídrica total, hasta 196% en el costado oriental de la cordillera y 66% en el costado occidental de la misma. Las diferencias obedecen al comportamiento climatológico propio de la región, que se evidencia en los registros de las estaciones del IDEAM.

El rendimiento hídrico (o cantidad de agua que fluye por unidad de área) es de 33,99, 9,82 y 52,81 L/s/Km² para la SZH 2105 – Río Páez, de 28, 8,93 y 78,65 para la SZH 2108 – Rio Yaguará y de 28,89, 8,64 y 77,97 SZH 2112 – Rio Bache, para los años medio, seco y húmedo, respectivamente. Este valor se encuentra por debajo de la media nacional que tiene un valor de 56 l/s/Km². Lo anterior obedece, a que el PNR engloba de manera parcial el área de las subcuencas y/o microcuencas.

La oferta hídrica superficial regional disponible corresponde a los caudales de las fuentes hídricas en el punto de corte determinado por el trazo de la subcuenca o microcuenca. Este caudal es resultado de descontar las perdidas por convección, evaporación, evapotranspiración, infiltración, percolación, etc. La relación entre la oferta hídrica total y la oferta disponible es en promedio 0,78, lo que supone una pérdida sobre la escorrentía total del 22%. Bajo estas condiciones, se alcanza una oferta

disponible de 208.231,68; 73.048,05 y 518.442,09 L/s para la SZH 2105 – Río Páez, de 260.429,43; 100.064,62; 719.845,86 L/s para la SZH 2108 – Río Yaguará y de 86.175,81; 22.395,80; 239.203,98 L/s para la SZH 2112 – Río Bache, para los años medio, seco y húmedo. La demanda es fija, sin importar si hay eventos extremos, dado que esta depende en buena parte de las concesiones otorgadas por la autoridad ambiental, quien establece un valor fijo. Los caudales autorizados ascienden para para la SZH 2105 – Río Páez a 2260,88 L/s, para la SZH 2108 – Río Yaguará a 5.437,90 L/s y para la SZH 2112 – Rio Bache a 5.495,22.

De las subcuencas y/o microcuencas presentes en el polígono propuesto que hacen parte de la SZH 2105 – Río Páez, las que tienen mayor compromiso es el río Negro (6,36 L/s). En la SZH 2108- Rio Yaguará son la Quebrada Grande (51,34 L/s), los ríos Íquira (42,07 L/s), La María (78,46 L/s), Río Pedernal (182,83) y Rio San Francisco (59,58 L/s) y para la SZH 2112- Rio Bache las que tienen mayor compromiso son las quebradas el Nilo (138,34 L/s) y San Juan (83,74 L/s). Los valores de rendimiento hídrico, oferta hídrica disponible y demanda hídrica por subcuenca del polígono propuesto para Cerro Banderas ser presentan en la Tabla 27.

.

Tabla 26. Área y caudal de las subcuencas dentro del polígono propuesto para Cerro Banderas – Ojo Blanco.

I GD	ia 2017 ii oa y oai	adar do ido c	Jan	cria o doi pong	<i>μοπο ριοραεδίο ρ</i>		A HÍDRICA			A HÍDRIC <i>A</i>		
							ZH (m3/Se			NR (m3/Se		
SZH	SUBCUENCA	AREA SUBCUENCA (Ha)	AREA DE DRENAJE ACUMULADA (Ha)	AREA DE SUBCUENCA EN EL PNR (Ha)	ÁREA DE DRENAJE ACUMULADA DE SUBCUENCA EN EL PNR (Ha)	AHM ¹	AHS ¹	AHH¹	AHM ¹	AHS ¹	AHH ¹	% DE CAUDAL PRODUCIDO EN EL PNR
2105	Rio Páez	242650,59	242650,59	13748,78	13748,78	308,11	110,20	536,85	4,68	1,35	7,30	1,52%
9	AD 06 RIO NEGRO NARVAEZ_alto	3722,41	3722,41	1043,20	1043,20	1,36	0,43	1,85	0,38	0,12	0,52	28,02%
10	AD 07 RIO NEGRO NARVAEZ	2041,78	2041,78	1760,47	1760,47	0,67	0,20	1,06	0,58	0,17	0,92	86,22%
11	AD 08 RIO NEGRO NARVAEZ	6236,00	6236,00	1296,22	1296,22	2,00	0,57	3,20	0,42	0,12	0,67	20,79%
62	R. NEGRO	18226,15	38905,66	9648,89	12705,57	13,33	3,80	20,96	3,31	0,94	5,20	24,80%
2108	Rio Yaguará	94130,80	94130,80	7827,21	7827,21	65,50	19,77	173,04	2,18	0,72	6,09	3,32%
15	Q. DE JUANCHACO	1662,99	1662,99	307,30	307,30	0,49	0,20	1,20	0,09	0,04	0,22	18,48%
23	Q. EL TOTE	2412,96	2412,96	482,72	482,72	0,67	0,26	1,61	0,13	0,05	0,32	20,01%
24	Q. GRANDE	1645,50	1645,50	205,65	205,65	0,47	0,16	1,20	0,06	0,02	0,15	12,50%
32	Q. NAZARETH	2708,26	2708,26	2225,72	2225,72	0,75	0,25	2,13	0,61	0,20	1,75	82,18%
34	R. IQUIRA_ALTO	5459,51	12310,05	2009,77	5496,92	3,37	1,14	9,58	0,55	0,19	1,56	16,33%
36	R. LA MARIA	2997,31	2997,31	373,48	373,48	0,85	0,18	2,69	0,11	0,02	0,33	12,46%
39	R. PEDERNAL_ALTO	4948,54	10776,33	961,14	1334,62	3,09	0,87	8,86	0,28	0,08	0,79	8,92%
41	R. SAN FRANCISCO	4142,28	6850,54	1261,43	3487,15	1,89	0,67	5,19	0,35	0,12	0,96	18,41%
2112	Rio Bache	115746,12	115746,12	1511,69	1511,69	131,61	35,42	344,47	0,43	0,14	1,17	0,32%
12	Q. EL NILO	4510,38	4510,38	427,54	427,54	1,33	0,30	3,59	0,13	0,03	0,34	9,48%
29	Q. MANILA	526,41	526,41	303,85	303,85	0,14	0,05	0,41	0,08	0,03	0,24	57,72%
35	Q. SAN JUAN	1602,14	1602,14	20,53	20,53	0,49	0,14	1,26	0,01	0,00	0,02	1,28%
43	R. EL CARMEN	4249,10	8873,30	759,78	1063,63	2,46	0,94	6,73	0,21	0,08	0,58	8,56%

¹ Año Hidrológico Medio (AHM), Año Hidrológico Seco (AHS), Año Hidrológico húmedo (AHH)

Tabla 27. Valores de rendimiento hídrico, oferta hídrica disponible y demanda hídrica por subcuenca del polígono propuesto para Cerro Banderas – Qio Blanco

para	para Cerro Banderas – Ojo Blanco												
		SZH	nto hídrica I, subcuen cuenca (L/s	ca o	PNR S	niento hídri ZH, subcu cuenca (L/s	ienca o		oferta hídrica s nal disponible		Do	emanda (L/	(s)
SZH	SUBCUENCA	АНМ	AHS	АНН	АНМ	AHS	АНН	АНМ	AHS	АНН	АНМ	AHS	АНН
2105	Rio Páez	126,98	45,42	221,24	34,06	9,84	53,10	208231,68	73048,05	518442,09	2260,88	2260,88	2260,88
9	AD 06 RIO NEGRO NARVAEZ_alto	36,56	11,55	49,79	36,56	11,55	49,79	1040,08	306,05	2201,03	0,02	0,02	0,02
10	AD 07 RIO NEGRO NARVAEZ	32,77	9,77	52,04	32,77	9,77	52,04	525,49	153,63	1254,71	0,04	0,04	0,04
11	AD 08 RIO NEGRO NARVAEZ	32,15	9,10	51,35	32,15	9,10	51,35	1575,91	437,87	3800,08	0,00	0,00	0,00
62	R. NEGRO	34,27	9,77	53,88	26,03	7,42	40,92	10437,11	2913,04	24431,15	6,36	6,36	6,36
2108	Rio Yaguará	69,59	21,00	183,83	27,81	9,25	77,79	260429,43	100064,62	719845,86	5437,90	5437,90	5437,90
15	Q. DE JUANCHACO	29,66	11,83	72,02	29,66	11,83	72,02	420,27	164,80	1365,99	9,59	9,59	9,59
23	Q. EL TOTE	27,62	10,97	66,61	27,62	10,97	66,61	568,82	219,45	1880,11	9,12	9,12	9,12
24	Q. GRANDE	28,86	9,70	72,63	28,86	9,70	72,63	424,60	155,38	1377,79	51,34	51,34	51,34
32	Q. NAZARETH	27,53	9,18	78,71	27,53	9,18	78,71	634,82	208,25	2354,24	0,27	0,27	0,27
34	R. IQUIRA_ALTO	27,41	9,25	77,85	10,02	3,38	28,46	2916,62	994,61	10663,00	42,07	42,07	42,07
36	R. LA MARIA	28,31	6,15	89,61	28,31	6,15	89,61	763,30	205,57	2893,73	78,46	78,46	78,46
39	R. PEDERNAL_ALTO	28,72	8,04	82,18	20,68	5,79	59,18	2789,60	910,75	9815,52	182,83	182,83	182,83
41	R. SAN FRANCISCO	27,54	9,84	75,76	9,96	3,56	27,41	1616,94	570,75	5813,74	59,58	59,58	59,58
2112	Rio Bache	113,71	30,60	297,61	28,13	9,41	77,27	86175,81	22395,80	239203,98	5495,22	5495,22	5495,22
12	Q. EL NILO	29,54	6,72	79,67	29,54	6,72	79,67	1548,55	401,15	4150,50	138,34	138,34	138,34
29	Q. MANILA	27,01	10,33	77,48	27,01	10,33	77,48	151,78	42,07	456,76	5,10	5,10	5,10
35	Q. SAN JUAN	30,61	8,50	78,93	30,61	8,50	78,93	548,72	149,64	1451,12	83,74	83,74	83,74
43	R. EL CARMEN	27,73	10,58	75,79	19,80	7,55	54,14	2594,68	714,51	7575,76	0,59	0,59	0,59

7.4.4 Índices

7.4.4.1 Índice de aridez (IA)

Es una característica cualitativa del clima, que permite medir el grado de suficiencia o insuficiencia de la precipitación para el sostenimiento de los ecosistemas de una región. Identifica áreas deficitarias o de excedentes de agua, calculadas a partir del balance hídrico superficial.

El Índice de aridez representa la dinámica superficial del suelo y no se refiere a la dinámica subsuperficial del suelo utilizada en análisis climáticos para clasificar el grado de humedad a través de la precipitación y la evapotranspiración potencial. (IDEAM-ENA, 2010).

La calificación del índice se realiza teniendo en cuenta unos rangos establecidos, con los que se establece a que categoría pertenece el valor. En la Tabla 28, se relacionan los rangos y sus categorías.

Las Figura 23, Figura 24, Figura 25, muestran los grados de excedencia o déficit de agua en la SZH 2105 – Río Páez, SZH 2108 – Río Yaguará y SZH 2112 – Río Bache, para los años hidrológicos medio, seco y húmedo. Para todas las SZH, en el año hidrológico seco (AHS), el 95% del área presenta alto déficit de agua. En el año medio, la mayor parte del área presenta las categorías Moderado a entre moderado y deficitario de agua, sin embargo, en las zonas más bajas del parque se presentan la categoría altamente deficitaria de agua.

En la Tabla 29, se presentan los valores del índice de aridez para todas las subcuencas y/o microcuencas asociadas al polígono. En el año hidrológico medio (AHS) las quebradas Grandes, El Nilo y San Juan, así como los ríos Yaguará y Bache, presentan

la categoría Deficitario de agua y como se indicó anteriormente, para el año seco todas presentan alto déficit de agua.

Tabla 28. Categorías para el Índice de Aridez (IA)

RANGO DE VALORES ÍNDICE DE ARIDEZ	CATEGORÍA	CARACTERÍSTICAS
< 0,15		Altos excedentes de agua
0,15 - 0,19		Excedentes de agua
0,20 -0,29		Entre moderado y excedentes de agua
0,30 -0,39		Moderado
0,40-0,49		Entre moderado y deficitario de agua
0,50 - 0,59		Deficitario de agua
> 0,60		Altamente deficitario de agua

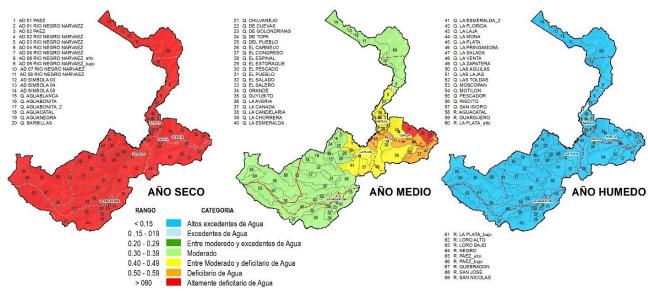


Figura 23. Índice de Aridez (IA) Río Páez.

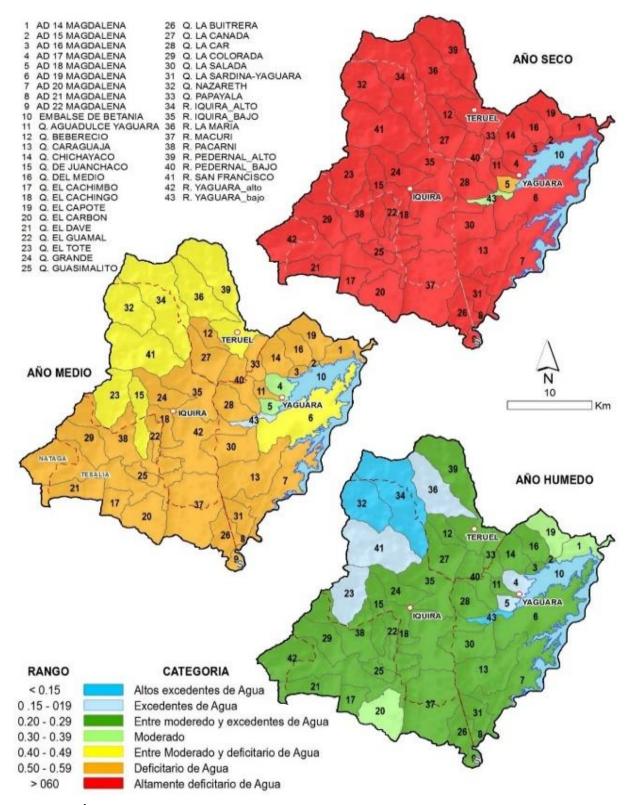


Figura 24. Índice de Aridez (IA) Río Yaguará.

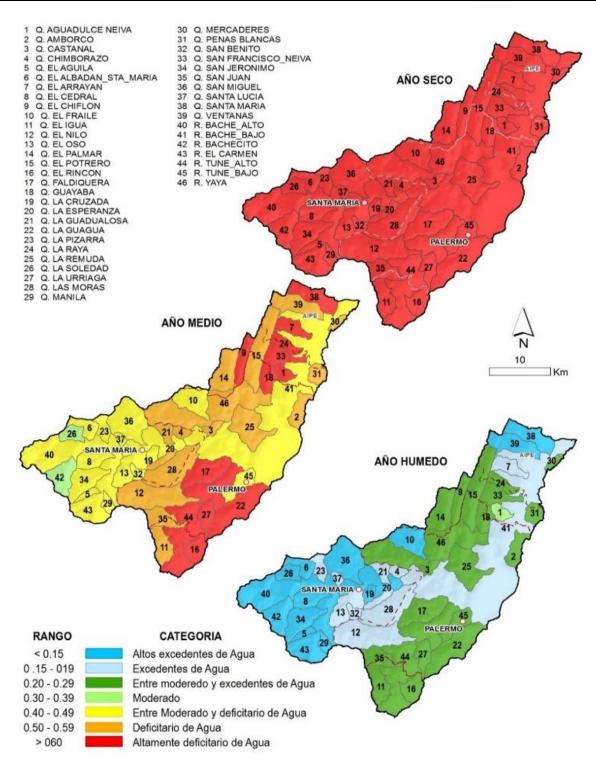


Figura 25. Índice de Aridez (IA) Río Bache.

Tabla 29. Índice de Aridez (IA) sobre las subcuencas y/o microcuencas del polígono propuesto para Cerro Banderas – Ojo Blanco

Spa	Data para con	to para Cerro Banderas – Ojo Blanco INDICE DE ARIDEZ = IA (ETP-ETR)/ETP							
67U	SZH SUBCUENCA		idrológico Medio		Hidrológico Seco		Irológico Húmedo		
SZH	SUBCUENCA	RAN	CATEGORIA	RANGO	CATEGORIA	RANGO	CATEGORIA		
2105	Rio Páez	GO 0,44	ENTRE MODERADO Y DEFICITARIO	0,89	ALTAMENTE DEFICITARIO DE AGUA	0,30	MODERADO		
9	AD 06 RIO NEGRO NARVAEZ_alto	0,41	ENTRE MODERADO Y DEFICITARIO	0,88	ALTAMENTE DEFICITARIO DE AGUA	0,28	ENTRE MODERADO Y EXCEDENTE		
10	AD 07 RIO NEGRO NARVAEZ	0,39	MODERADO	0,87	ALTAMENTE DEFICITARIO DE AGUA	0,26	ENTRE MODERADO Y EXCEDENTE		
11	AD 08 RIO NEGRO NARVAEZ	0,39	MODERADO	0,87	ALTAMENTE DEFICITARIO DE AGUA	0,27	ENTRE MODERADO Y EXCEDENTE		
62	R. NEGRO	0,39	MODERADO	0,87	ALTAMENTE DEFICITARIO DE AGUA	0,26	ENTRE MODERADO Y EXCEDENTE		
2108	Rio Yaguará	0,52	DEFICITARIO DE AGUA	0,88	ALTAMENTE DEFICITARIO DE AGUA	0,24	ENTRE MODERADO Y EXCEDENTE		
15	Q. DE JUANCHACO	0,49	ENTRE MODERADO Y DEFICITARIO	0,91	ALTAMENTE DEFICITARIO DE AGUA	0,21	ENTRE MODERADO Y EXCEDENTE		
23	Q. EL TOTE	0,44	ENTRE MODERADO Y DEFICITARIO	0,89	ALTAMENTE DEFICITARIO DE AGUA	0,17	EXCEDENTE DE AGUA		
24	Q. GRANDE	0,50	DEFICITARIO DE AGUA	0,91	ALTAMENTE DEFICITARIO DE AGUA	0,22	ENTRE MODERADO Y EXCEDENTE		
32	Q. NAZARETH	0,40	ENTRE MODERADO Y DEFICITARIO	0,88	ALTAMENTE DEFICITARIO DE AGUA	0,12	ALTOS EXCEDENTES DE AGUA		
34	R. IQUIRA_ALTO	0,42	ENTRE MODERADO Y DEFICITARIO	0,88	ALTAMENTE DEFICITARIO DE AGUA	0,14	ALTOS EXCEDENTES DE AGUA		
36	R. LA MARIA	0,46	ENTRE MODERADO Y DEFICITARIO	0,90	ALTAMENTE DEFICITARIO DE AGUA	0,19	EXCEDENTE DE AGUA		
39	R. PEDERNAL_ALT O	0,49	ENTRE MODERADO Y DEFICITARIO	0,90	ALTAMENTE DEFICITARIO DE AGUA	0,21	ENTRE MODERADO Y EXCEDENTE		
41	R. SAN FRANCISCO	0,44	ENTRE MODERADO Y DEFICITARIO	0,89	ALTAMENTE DEFICITARIO DE AGUA	0,17	EXCEDENTE DE AGUA		
2112	Rio Bache	0,53	DEFICITARIO DE AGUA	0,93	ALTAMENTE DEFICITARIO DE AGUA	0,19	EXCEDENTE DE AGUA		
12	Q. EL NILO	0,51	DEFICITARIO DE AGUA	0,94	ALTAMENTE DEFICITARIO DE AGUA	0,17	EXCEDENTE DE AGUA		
29	Q. MANILA	0,40	ENTRE MODERADO Y DEFICITARIO	0,92	ALTAMENTE DEFICITARIO DE AGUA	0,07	ALTOS EXCEDENTES DE AGUA		
35	Q. SAN JUAN	0,55	DEFICITARIO DE AGUA	0,95	ALTAMENTE DEFICITARIO DE AGUA	0,21	ENTRE MODERADO Y EXCEDENTE		
43	R. EL CARMEN	0,42	ENTRE MODERADO Y DEFICITARIO	0,92	ALTAMENTE DEFICITARIO DE AGUA	0,10	ALTOS EXCEDENTES DE AGUA		

7.4.5 Indicadores de presión por uso del agua

Como indicadores de presión se consideran cuatro índices: el Índice de uso del agua y el Índice extracción de agua subterránea, el Índice de agua subterránea para abastecimiento público con respecto al número de habitantes y el índice integral de uso de agua superficial y subterránea.

7.4.5.1 Índice de uso del agua de agua superficial (IUA)

El índice de uso del agua (IUA) es la relación entre la cantidad de agua utilizada por los diferentes sectores y usuarios, en un período determinado (anual, mensual) y unidad espacial de análisis en relación con la oferta hídrica regional disponible neta (OHRD) para las mismas unidades de tiempo y espaciales.

De acuerdo con él ERA el IUA representa la presión por el uso sobre la oferta hídrica disponible superficial. En la Tabla 30 se listan los rangos y categorías para la clasificación de este índice.

Tabla 30. Rangos y categorías del índice de uso del agua (IUA).

Rango (Dh/Oh)*100 IUA	Categoría IUA	Significado
>50	Muy alto	La presión de la demanda es muy alta con respecto a la oferta disponible
20,01 - 50	Alto	La presión de la demanda es alta con respecto a la oferta disponible
10,01 - 20		La presión de la demanda es moderada con respecto a la oferta disponible
1 - 10	Bajo	La presión de la demanda es baja con respecto a la oferta disponible
≤ 1	Muy bajo	La presión de la demanda no es significativa con respecto a la oferta disponible

De acuerdo con las *Figura 26*, *Figura 27*, *Figura 28*, en la mayor parte del área de la SZH 2105 – Río Páez, SZH 2108 – Rio Yaguará y SZH 2112 – Rio Bache, la presión ejercida sobre las fuentes hídricas se encuentra de moderado a muy bajo, salvo unos contados casos que se encuentran en la categoría alto a muy alto, para el año

agrologico seco, que es el evento extremo sobre el cual se ve una gran reducción del caudal. En términos generales, el uso del agua se encuentra en rangos aceptables.

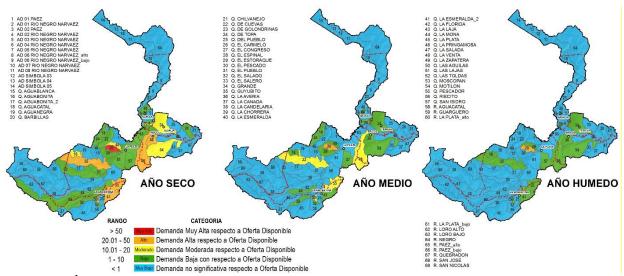


Figura 26. Índice de uso del agua (IUA) SZH 2105 - Río Páez.

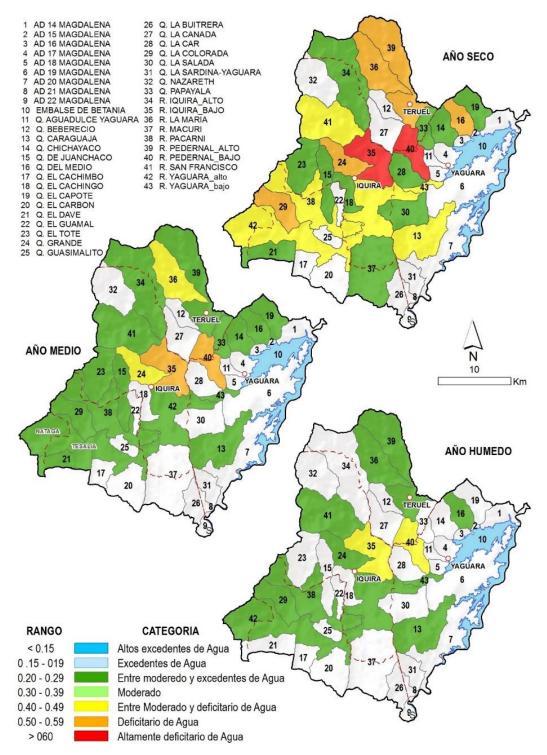


Figura 27. Índice de uso del agua (IUA) SZH 2108 – Río Yaguará.

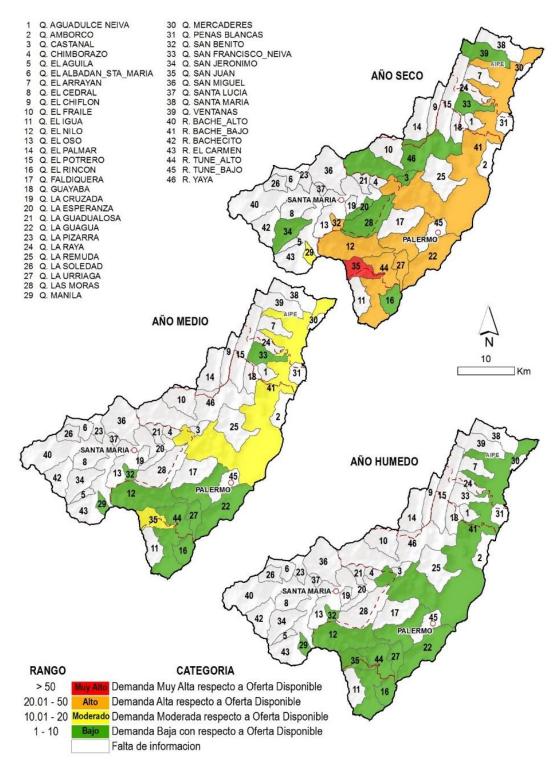


Figura 28. Índice de uso del agua (IUA) SZH 2112 - Río Bache.

La Tabla 31 presenta el índice de uso del agua (IUA) sobre las subcuencas y/o microcuencas del polígono propuesto para Cerro Banderas – Ojo Blanco. Las estimaciones, muestran que los caudales concesionados no superan el 50% de la oferta disponible, aun en el periodo seco, razón por la cual el IUA se encuentra entre alto y muy bajo, excepto por la quebrada San Juan en la SZH Río Bache que se encuentra muy alto.

Tabla 31. Índice de uso del agua (IUA) sobre las subcuencas y/o microcuencas del

polígono propuesto para Cerro Banderas - Ojo Blanco

			INDICE D	E USO DE	EL AGUA = IUA	(DH/OHRD)
SZH	SUBCUENCA	Año Hidr	ológico Medio	Año Hidrológico Seco		Año Hidrológico Húmedo	
		RANGO	CATEGORIA	RANGO	CATEGORIA	RANGO	CATEGORIA
2105	Rio Páez	2,32	BAJO	6,50	BAJO	1,01	BAJO
9	AD 06 RIO NEGRO NARVAEZ_alto	0,00	MUY BAJO	0,01	MUY BAJO	0,00	MUY BAJO
10	AD 07 RIO NEGRO NARVAEZ	0,01	MUY BAJO	0,03	MUY BAJO	0,00	MUY BAJO
11	AD 08 RIO NEGRO NARVAEZ	0,00	MUY BAJO	0,00	MUY BAJO	0,00	MUY BAJO
62	R. NEGRO	0,06	MUY BAJO	0,22	MUY BAJO	0,03	MUY BAJO
2108	Rio Yaguará	4,03	BAJO	11,87	MEDIO	1,21	BAJO
15	Q. DE JUANCHACO	2,28	BAJO	5,82	BAJO	0,70	MUY BAJO
23	Q. EL TOTE	1,60	BAJO	4,15	BAJO	0,48	MUY BAJO
24	Q. GRANDE	12,09	MEDIO	33,04	ALTO	3,73	BAJO
32	Q. NAZARETH	0,04	MUY BAJO	0,13	MUY BAJO	0,01	MUY BAJO
34	R. IQUIRA_ALTO	1,44	BAJO	4,23	BAJO	0,39	MUY BAJO
36	R. LA MARIA	10,28	MEDIO	38,17	ALTO	2,71	BAJO
39	R. PEDERNAL_ALTO	6,55	BAJO	20,07	ALTO	1,86	BAJO
41	R. SAN FRANCISCO	3,68	BAJO	10,44	MEDIO	1,02	BAJO
2112	Rio Bache	1,75	BAJO	6,78	BAJO	0,64	MUY BAJO
12	Q. EL NILO	8,93	BAJO	34,49	ALTO	3,33	BAJO
29	Q. MANILA	3,36	BAJO	12,13	MEDIO	1,12	BAJO
35	Q. SAN JUAN	15,26	MEDIO	55,96	MUY ALTO	5,77	BAJO
43	R. EL CARMEN	0,02	MUY BAJO	0,08	MUY BAJO	0,01	MUY BAJO

En el Anexo 1, se tiene el complemento de Índice de retención y regulación hídrica (IRH), Índice de alteración potencial de la calidad de agua (IACAL), Índice de alteración potencial de la calidad de agua (IACAL), e Índice de alteración potencial de la calidad de agua (IACAL).

7.5 GEOMORFOLOGÍA

A continuación, se presenta el estudio realizado para el plan de manejo del PNR (CONIF - CAM, 2007, pág. 28):

Según la cartografía disponible para el departamento del Huila y analizando de forma específica la región Cerro Banderas – Ojo Blanco, es claro que prácticamente la única unidad geomorfológica presente corresponde a montañas y áreas no muy representativas de origen estructural (CONIF - CAM, 2007, pág. 28).

- <u>Unidad de morfología montañosa</u>

Corresponde al flanco oriental de la Cordillera Central, donde se asienta la zona de interés. Se conforma por el Batolito de Ibagué, de edad Jurásico; cuerpo de origen ígneo constituido por rocas intrusivas de composición granodiorítas dominante. Esta unidad litológica se caracteriza por el relieve abrupto, pendiente fuerte, drenaje dendrítico, deforestación y pobre desarrollo del perfil de meteorización, calculándose una profundidad entre 2 y 6 m (CONIF - CAM, 2007, pág. 28).

- <u>Unidades de origen estructural</u>

Crestones: Corresponden a geoformas de origen estructural desarrolladas sobre rocas sedimentarias que forman planos estructurales amplios y extensos, limitados por una zona de escarpe. Están formadas por areniscas cuarzosas y compactas. Sus estratos rocosos orientados de forma inclinada forman pendientes fuertemente empinadas (mayor al 75%), con suelos muy superficiales y roca dura a menos de 50 centímetros, impenetrable para las raíces de la mayoría de las plantas. Los crestones, forman una sola unidad que incluye la

ladera estructural y el frente o escarpe estructural; El cual se compone de una intercalación de arenitas cuarzosas, arcillolitas y lutitas; En estas últimas se acumula agua y material orgánica y se forman suelos muy profundos que favorecen el crecimiento de vegetación arbustiva y árboles (CONIF - CAM, 2007), p.28.

Crestas: Se caracterizan porque la pendiente en su conjunto no supera el 25% conformadas por un substrato rocoso misceláneo, donde predomina en la parte más alta, areniscas cuarzosas, en las más inclinadas lodolitas y arcillolitas limosas y las más onduladas o planas arcillolitas y lutitas con mantos de carbón. Así mientras en las cuestas inclinadas y altas predominan la cobertura de pastizales no manejados en las partes bajas, onduladas a planas, se nota alta intensidad del uso agropecuario favorecido por la presencia de un suelo negro, más profundo con gran cantidad de materia orgánica (CONIF - CAM, 2007, pág. 28).

- Unidades de origen Denudacional y Volcánico Denudacional

El Proceso denudación significa desnudar. La roca original en su superficie se encuentra disgregada y expuesta a los agentes ambientales que actualmente la están moldeando. Estas formas se encuentran distribuidas en toda el área municipal. Se encuentran conformadas por laderas de erosión, laderas en general, lomeríos y colinas, las cuales se diferencian entre sí por el sustrato rocoso del que se componen, la forma específica que los caracteriza y los fenómenos activos que los afectan; diferencias que se manifiestan en el grado de cobertura vegetal y en la utilización de las tierras (CONIF - CAM, 2007, pág. 28).

7.6 APTITUD Y VOCACIÓN DEL SUELO

De acuerdo con el sistema desarrollado por USDA y adaptado en Colombia por el IGAC, en el polígono propuesto Cerro Banderas Ojo Blanco, existen principalmente,

suelos Tipo VII y VIII (Figura 29), indicando que son tierras para el uso forestal, la protección y conservación, con limitaciones muy severas y no aptas para uso agropecuario (Corporación Autonoma Regional del Alto Magdalena - CAM, 2016). Las geoformas son montañas de pendientes muy escarpadas, con crestas y vigas, que reducen las facilidades para la intervención del hombre para la utilización con sistemas de producción agropecuarios, sin embargo, a pesar de esta realidad, se encuentra en conflicto en algunas zonas, por la intervención antrópica (IGAC, 2014).

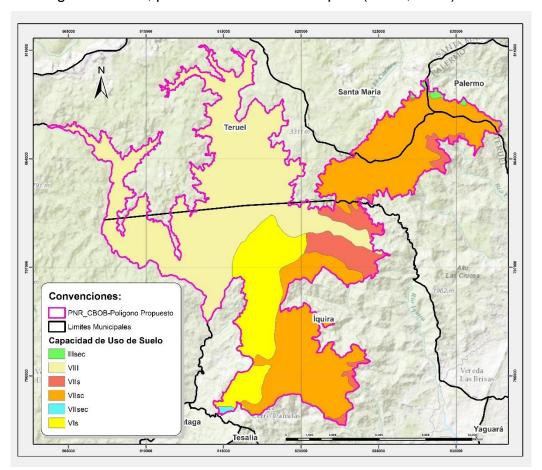


Figura 29. Capacidad de uso de suelo en el polígono propuesto

El 47% del área corresponde a suelos tipo VIII, que son suelos que no son aptos para ninguna actividad, por sus limitaciones de clima, relieve, erodabilidad, y suelos de roca. El 33% corresponde a suelos tipo VIIsc, que son suelos que tienen muy severas limitaciones de tipo edáfico y climático que los imposibilita para cultivos y limita para bosque protector-productor. El 13% corresponde a suelos tipo VIs, que son suelos que

se presentan en áreas fuertemente quebradas, con susceptibilidad a erosión. El 7% corresponde a suelos tipo VIIs, que son suelos de erosión laminar, deslizamientos y desprendimientos moderados con alta pendiente (Corporación Autonoma Regional del Alto Magdalena - CAM, 2016).

7.7 BIOGEOGRAFÍA Y ECOSISTEMAS

De acuerdo con el mapa Ecosistemas de Colombia vigente (IDEAM, 2018), el área cuenta con diez (10) tipos de ecosistemas, los cuales están representados principalmente por el ecosistema de Bosque andino húmedo con el 64% (*Figura 30*). El bosque húmedo andino está representado casi exclusivamente el bioma azonal de selva andina, los cuales constan de selvas higrofíticas y subhigrofíticas de los pisos isomesotérmicos e isomicrotérmicos sujetas a la influencia permanente de niebla (desde 5°C a 14°C), equivalentes al bosque húmedo montano, bosque muy húmedo montano y bosque pluvial montano según la clasificación de Holdridge (Hernández & Sánchez, Biomas terrestres de Colombia, 1992).

El bosque húmedo subandino, ocupa el 0,3% del área. Tiene selvas higrofíticas o subhigrofíticas de los pisos térmicos isomesotérmico (desde unos 14-15°C hasta unos 22-24°C). La frecuencia de las nieblas tiende a elevar la humedad ambiental y a decrecer la evapotranspiración. Equivale a los bosques húmedos, muy húmedos y pluviales de los pisos premontano y montano bajo la clasificación de Holdridge (Hernández & Sánchez, Biomas terrestres de Colombia, 1992).

Aparte de estos dos ecosistemas naturales también hay representación de ecosistema de páramo húmedo, del complejo Nevado del Huila – Moras, en un 5%. Otros ecosistemas que se encuentran son bosque fragmentado con pastos y cultivos (6%), arbustal andino húmedo (0,4%), vegetación secundaria (3%), así como ecosistemas antrópicos como Agroecosistema de mosaico de pastos y espacios naturales (12%),

Agroecosistema ganadero (2%), Agroecosistema cafetero (1%), Agroecosistema de mosaico de cultivos, pastos y espacios naturales (0,1%).

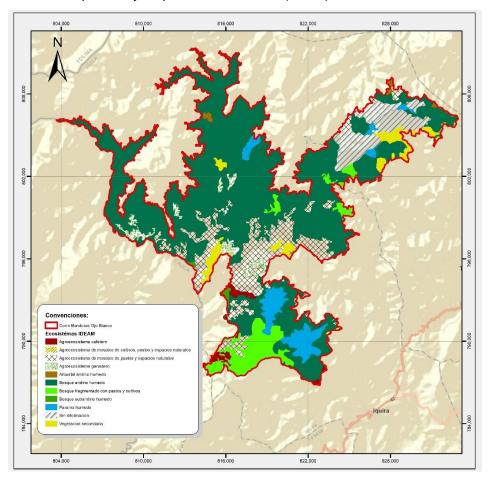


Figura 30. Ecosistemas del polígono propuesto para CBOB

7.8 ANÁLISIS DE COBERTURA DE LA TIERRA

El área propuesta cuenta como cobertura predominante la natural (Bosques y otras áreas naturales) con el 79,90% (17.637 ha), de los cuales 16.685 ha son bosque denso alto (Tabla 32). Como cobertura seminatural (áreas con algún grado de actividad humana como vegetación secundaria y bosque fragmentado), se tiene el 6,08% (1.342 ha). Aunque existe una considerable área de conservación, también existe una alta intervención por el establecimiento de sistemas productivos basados en agricultura y

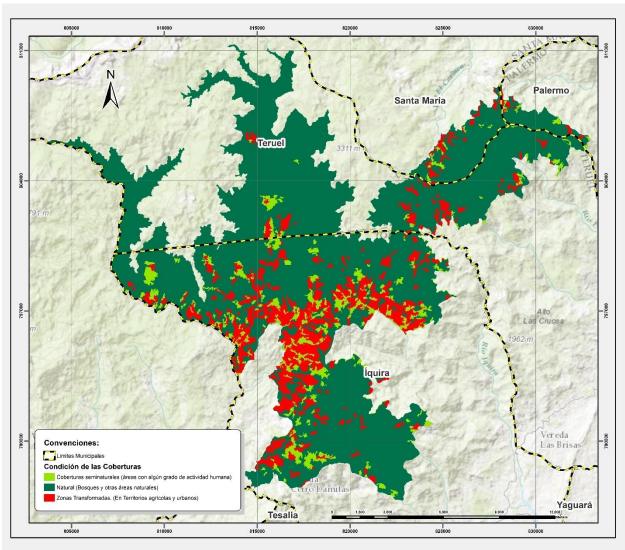

ganadería, constituyendo el 14,02% (3.095 ha) como área transformada (en territorios agrícolas y urbanos) (*Figura 31*).

Tabla 32. Cobertura de la tierra en el polígono propuesto.

COBERTURA	ÁREA (ha)	PROPORCIÓN (%)
Arbusal abierto mesófilo	0,40	0,002%
Bosque abierto bajo de tierra firme	16,37	0,07%
Bosque de galeria y ripario	2,44	0,01%
Bosque denso alto de tierra firme	16.685,23	75,59%
Bosque denso bajo de tierra firme	0,003	0,000%
Bosque fragmentado con vegetación secundaria	819,90	3,71%
Cultivos permanentes arbustivos	47,34	0,21%
Herbazal denso de tierra firme con arbustos	929,08	4,21%
Mosaico de cultivos pastos y espacios naturales	4,38	0,02%
Mosaico de pastos con espacios naturales	17,21	0,08%
Mosaico de pastos y cultivos	0,11	0,001%
Pastos arbolados	90,97	0,41%
Pastos enmalezados	1.272,41	5,76%
Pastos limpios	1.609,44	7,29%
Ríos	3,30	0,01%
Tierras desnudas y degradadas	49,83	0,23%
Vegetación secundaria baja	521,66	2,36%
Zonas quemadas	3,72	0,02%
TOTAL	22.073,79	100%
F (- OAM 0040		

Fuente: CAM, 2016.

Figura 31. Condición de las coberturas en el polígono propuesto. Fuente: CAM, 2016-2018.

7.9 FLORA

Cerro Banderas Ojo Blanco, se caracteriza por presentar una vegetación típica de los Orobiomas de selva Andina y algunos enclaves ecotonales de selva subandina. La vegetación de este flanco cordillerano es la mejor explorada y conocida en cuanto su composición florística y caracterización fitosociológica (Rangel & Garzón, 1995).

La cobertura predominante en el área corresponde a formaciones vegetales de bosques andinos hidrofíticos, temporalmente nublados, formados por árboles cuyos troncos generalmente están cubiertos por musgos y líquenes con las ramas pobladas de quiches y epífitas. Se destacan especies como la Palma de Cera (*Ceroxylon quindiuense*), Robles, (*Quercus humboldtii y Colombalanus excelsa*), Pino Romerón (*Decussocarpus rospigliosii*), Arrayan (*Myrcianthes sp.*), Encenillo (*Weinmannia sp.*), Chaquiro (*Podocarpus oleifolius*), Motilón o Chuguacá (*Hieronyma sp.*), Siete Cueros (*Tibouchina sp.*) y Helecho Arborescente (*Trichipteris frigida*) (CONIF - CAM, 2007).

7.9.1 Composición vegetal

En términos de diversidad de especies, los muestreos realizados (CONIF - CAM, 2007) (Corporación Autónoma del Alto Magdalena - CAM, Universidad Distrital Francisco José de Caldas, 2017-2018) dan como resultado el registro un total de 307 especies (*Anexo 2*) distribuidas en (38) órdenes y (65) familias y (40) géneros (Figura 32). Del total de registros, (7) morfotipos fueron identificados hasta el nivel de familia, (68) a nivel de género y (232) hasta especie.

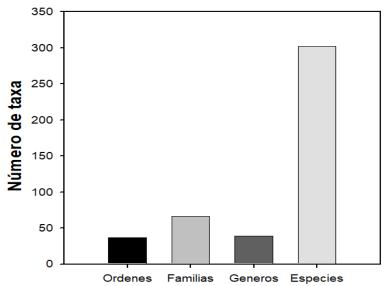


Figura 32. Número de órdenes, familias, géneros y especies de flora registrados en Cerro Banderas Ojo Blanco.

Fuente: (Corporación Autónoma del Alto Magdalena - CAM, Universidad Distrital Francisco José de Caldas, 2017-2018).

La familia que presenta mayor abundancia es Melastomataceae con (31) especies, seguido de Orchidaceae con (24) especies y Lauraceae con (23) especies (Figura 33). Esto es de esperarse, pues la familia Melastomataceae es muy abundante en la mayoría de los ambientes andinos y comprende árboles, arbustos, hierbas (Wurdack, 1973). Además, explotan un amplio rango de hábitats, crecen frecuentemente en bosques primarios donde pueden llegar a ser árboles grandes, en hábitats sucesionales tempranos o perturbados son arbustos, y en vegetación de arenas blancas y sabanas (Renner, 1983). Es importante destacar que Colombia es el país con más diversidad de orquídeas en todo el planeta, pero las especies de los bosques de niebla del país tienen doble riesgo debido a sus niveles elevados de endemismo y las altas tasas de conversión de sus ecosistemas a usos como la agricultura y la ganadería (Dixon y Phillips, 2007).

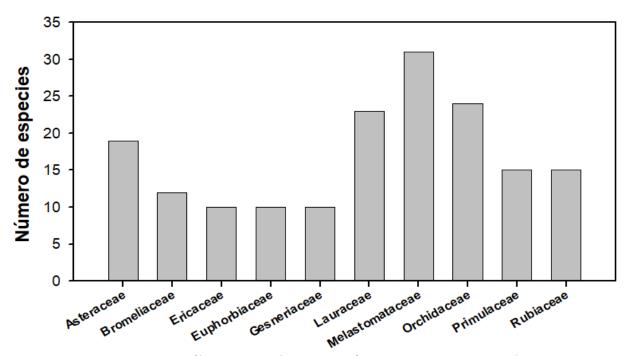


Figura 33. Riqueza específica de las familias más representativas de flora registradas en Cerro Banderas Ojo Blanco.

Fuente: (Corporación Autónoma del Alto Magdalena - CAM, Universidad Distrital Francisco José de Caldas, 2017-2018).

7.9.2 Flora endémica

Se reportan 38 especies de flora endémicas de Colombia (Bernal, Gradstein, & Celis, Catálogo de plantas y líquenes de Colombia, 2015) en el polígono propuesto para Cerro Banderas Ojo Blanco (Tabla 33). La biota de estos orobiomas ubicados en el flanco oriental de la Cordillera Central presenta un alto grado de endemismo producto del aislamiento a que quedó sujeta desde el levantamiento cordillerano y el surgimiento de nuevos microhábitats que favorecieron la diversificación de algunos linajes de tierras bajas hacia la especialización en ambientes de clima de montaña (CONIF - CAM, 2007).

Tabla 33. Especies de flora endémicas de Colombia presentes en el polígono

propuesto para Cerro Banderas Ojo Blanco, departamento del Huila.

propuesto para Cerro Banderas Ojo Blanco, departamento del Hulla.					
CLASE	ESPECIE	NOMBRE COMÚN	CATEGORÍA		
Equisetopsida	Brunellia macrophylla	Cedrillo, crespilla	Е		
Equisetopsida	Pitcairnia exserta	Bromelia	Е		
Equisetopsida	Anthurium bogotense	Anturio	E		
Equisetopsida	Oreopanax bogotensis	Mano de oso	Е		
Equisetopsida	Oreopanax mutisianus	Yuco, mano de oso	E		
Equisetopsida	Schefflera bogotensis	Cheflera	E		
Equisetopsida	Espeletia argentea	Frailejón	E		
Equisetopsida	Espeletia cabrerensis	Frailejón	E		
Equisetopsida	Espeletia grandiflora	Frailejón	E		
Equisetopsida	Espeletia killipii	Frailejón	E		
Equisetopsida	Espeletia leporina	Frailejón	E		
Equisetopsida	Espeletia miradorensis	Frailejón	E		
Equisetopsida	Espeletia summapacis	Frailejón	E		
Equisetopsida	Espeletia tapirophila	Frailejón	E		
Equisetopsida	Epidendrum erosum	Orquídea	E		
Equisetopsida	Epidendrum chioneum	Orquídea	E		
Equisetopsida	Masdevallia strumifera	Orquídea	E		
Equisetopsida	Odontoglossum weirii	Orquídea	E		
Equisetopsida	Oncidium pyramidale	Orquídea	E		
Equisetopsida	Senecio coccineus		Е		
Equisetopsida	Greigia mulfordii		E		
Equisetopsida	Greigia stenolepis	Piñuela	E		
Equisetopsida	Brunellia propinqua		E		
Equisetopsida	Miconia gleasoniana		Е		
Equisetopsida	Meriania cf. silverstonei	Pepito de montaña	E		
Equisetopsida	Miconia brachygyna	Uvito	Е		
Equisetopsida	Cecropia telealba		E		
Equisetopsida	Schefflera bejucosa	Copé	Е		
Equisetopsida	Tovomita parviflora	Granizo	E		
Equisetopsida	Coussarea grandifolia		E		
Equisetopsida	Meriania quintuplinervis	Cordoncillo	E		
Equisetopsida	Piper begoniicolor		E		
Equisetopsida	Chrysochlamys floribunda		E		

CLASE	ESPECIE	NOMBRE COMÚN	CATEGORÍA
Equisetopsida	Meriania yalconensis		E
Equisetopsida	Meliosma cf. cundinamarcensis		E
Equisetopsida	Aiphanes concinna		E
Equisetopsida	Sphaeradenia fosbergii		E
Equisetopsida	Rhodostemonodaphne laxa		E

E= Endémicas.

Fuente: (Bernal, Gradstein, & Celis, Catálogo de plantas y líquenes de Colombia, 2015).

7.9.3 Flora amenazada

La evaluación sobre amenazas se realizó con base en las categorías propuestas por la Unión Internacional para la Conservación de la Naturaleza (UICN), el Libro Rojo de Plantas de Colombia, Resolución 1912 de 2017 del Ministerio de Ambiente y Desarrollo Sostenible por la cual se declaran las especies silvestres que se encuentran amenazadas en el territorio nacional y los apéndices CITES (Convención sobre el Comercio Internacional de Especies Amenazadas de Fauna y Flora Silvestres).

Se reportan (16) especies vegetales que presentan algún grado de vulnerabilidad en el área de Cerro Banderas Ojo Blanco (Tabla 34). Dentro de las causas de amenazas para estas especies encontramos la destrucción de su hábitat, ampliación de la frontera agropecuaria, deforestación de los bosques Andinos, recolección excesiva con fines comerciales y ornamentales y tala para uso maderable (Bernal, Gradstein, & Celis, Catálogo de las Plantas de Colombia: Cifras preliminares de la flora de Colombia, 2007). Muchas orquídeas con rangos geográficos reducidos pueden estar gravemente amenazadas aun cuando algunas especies sean abundantes localmente.

Tabla 34. Especies de flora con alguna categoría de amenaza presentes en el polígono propuesto para Cerro Banderas Ojo Blanco, departamento del Huila.

propagate para corre zarracre		opariannonio ao		
ESPECIE	NOMBRE COMÚN	LIBRO ROJO y RES. 1912 DE 2017	UICN	CITES
Pitcairnia exserta	Bromelia			II
Epidendrum erosum	Orquídea			II
Epidendrum chioneum	Orquídea			II
Masdevallia strumifera	Orquídea			II
Odontoglossum weirii	Orquídea		VU	II
Oncidium pyramidale	Orquídea			II

ESPECIE	NOMBRE COMÚN	LIBRO ROJO y RES. 1912 DE 2017	UICN	CITES
Passiflora crispolanata	Pasiflora	VU	VU	
Podocarpus oleifolius	Pino Romerón	VU	VU	
Greigia mulfordii			VU	
Greigia stenolepis	Piñiela		NT	
Puya goudotiana	Piñiela		NT	
Brachionidium brevicaudatum				II
Quercus humboldtii	Roble		VU	
Cyathea squamipes	Palma boba			II
Cyathea cf. caracasana				II
Aiphanes concinna			NT	

7.10 FAUNA

7.10.1 Composición y riqueza de Mamíferos

Se registran en total (59) especies de mamíferos distribuidas en (12) órdenes, (26) familias y (48) géneros (Figura 34).

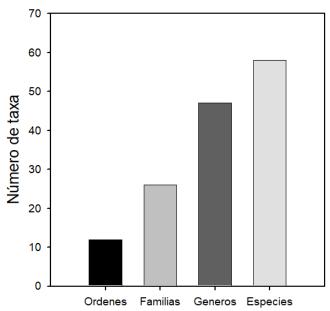


Figura 34. Número de órdenes, familias, géneros y especies de mamíferos registrados en el polígono propuesto para Cerro Banderas Ojo Blanco.

Fuente: (Corporación Autónoma del Alto Magdalena - CAM, Universidad Distrital Francisco José de Caldas, 2017-2018).

Dentro de los órdenes mejor representados se encuentra Chiroptera con (19) especies seguido de Carnívora con (14), Rodentia con (11), Artiodactyla y Primates con (4), Didelphimorphia con (3), Cingulata con (2) y Perisodactyla, Pilosa, Soricomorpha, Lagomorpha, y Paucituberculata con (1) especie (Figura 35). Este registro de

mamíferos corresponde a el 11,38% de las (519) especies (Mantilla & Montenegro, 2016) presentes para el territorio Colombiano, precisando que en polígono propuesto para Cerro Banderas presenta un alto porcentaje de mamíferos que están cumpliendo papeles ecosistémicos importantes dentro de esta área, condición que puede ser evaluada a partir de los diferentes gremios que poseen, desde quienes están ocupando los niveles tróficos más altos hasta los consumidores primarios son necesarios para los diferentes procesos que se dan en los ecosistemas.

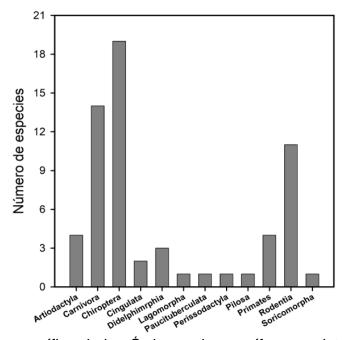


Figura 35. Riqueza específica de los Órdenes de mamíferos registrados en el polígono propuesto para Cerro Banderas Ojo Blanco.

Fuente: (Corporación Autónoma del Alto Magdalena - CAM, Universidad Distrital Francisco José de Caldas, 2017-2018).

El alto registro de especies del orden Chiroptera y Rodentia es de esperarse ya que actualmente son los grupos que poseen la mayor cantidad de individuos. (Ramírez, Suárez, & González, 2016). Aunque Chiroptera es el grupo de mayor riqueza, es importante incentivar a la realización de estudios focalizados en este grupo, esto con el fin de ampliar el conocimiento sobre las especies y sus roles ecosistémicos, dentro del listado de murciélagos se encuentran especies importantes de Phyllostomidos de los géneros *Artibeus*, *Carollia*, *Sturnira* quienes poseen una dieta frugívora, otros como del genero *Anoura* con dieta nectarívora, y los Vespertilionidos *Eptesicus*, *Histiotus*,

Lasiurus Myotis y Rhogessa, quienes son consumidores de insectos, a pesar de la concepción común únicamente hay una especie de murciélago que suele ser considerada como una plaga y esta a su vez, se encuentra estrechamente relacionada con las áreas empleadas para ganadería, Desmodus rotundus.

Esta distinción de gremios tróficos nos permite reconocer el papel ecosistémico que cumplen estas especies, como lo sería en la dispersión de semillas, la polinización, y el control de plagas de insectos. De igual forma sucede con las especies de los Órdenes de Roedores, Primates, Artiodactylos, y Carnivoros quienes en su dieta consumen principalmente frutos de plantas que son dispersadas a muchos kilómetros incidiendo de esta manera en la restauración de las áreas abiertas. Otra contribución significativa que ejercen las especies en el ecosistema tiene que ver con el aporte de biomasa, en las que se puede resaltar el papel de *Tapirus pinchaque, Mazama americana, Pudu mephistophiles, Mazama rufina, Cuniculus taczanowski, Dinomys branickii,* entre otros.

7.10.2 Especies vedadas, endémicas o amenazadas, con valor comercial, científico y cultural de Mamíferos

En los últimos años ha existido una fuerte transformación y pérdida de las áreas naturales debido a los cambios del uso del suelo para áreas de cultivo, zonas de pastoreo y el crecimiento de las áreas urbanas (Galindo, 2007), llegando a un 34% de área de ecosistemas terrestres transformados. Estos cambios que se hacen en los ecosistemas son los principales causantes de pérdida, disminución y desplazamiento de la diversidad. Adicionalmente otra amenaza que poseen los mamíferos es que suelen ser objeto de la caza furtiva y del tráfico ilegal, lo que ha generado una disminución de sus poblaciones hasta el punto en que diferentes entidades y organizaciones evalúen el estado de amenaza y vulnerabilidad con el fin de que se promuevan planes de conservación y protección de estas especies.

Para el caso específico de los mamíferos del polígono propuesto para Cerro banderas, (12) de ellos se han reportado en alguna categoría de amenaza (Tabla 35). Siendo las de mayor riesgo el mono churuco Lagothrix lagothricha lugens en peligro crítico (CR) y la danta de montaña Tapirus pinchaque categorizado en peligro (EN), otros como, el oso de anteojos Tremarctos ornatus, El mono lechuza Aotus cf griseimembra, la comadreja Mustela felipei, el venado enano Pudu Mephistophiles y el soche de páramo Mazama rufina se encuentran en Vulnerable (VU), el puma concolor en Casi amenazado (NT) y la ardilla Notosciurus pucheranii en Datos deficientes (DD), aunque esta última no es considerada como una categoría de amenaza, hace referencia a la falta de conocimiento que se tiene de estas poblaciones que eventualmente puedan estar o no en peligro.

Listado de especies amenazadas o vulnerables con ocurrencia en el

polígono propuesto para Cerro Banderas Oio Blanco

poligorio propo	icsto para oci	TO Banderas Ojo Bi	anco			
					Categoría	
Orden	Familia	Especie	Nombre común	Libro rojo	UICN	CITES
Cingulata	Dasypodidae	Cabassous centralis	Armadillo		DD	
Primates	Cebidae	Aotus cf griseimembra	Mono lechuza		VU	
Primates	Atelidae	Lagothrix lagotricha lugens	Churuco	VU	CR	II
Carnivora	Ursidae	Tremarctos ornatus	Oso de anteojos		VU	
Carnivora	Procyonidae	Nasuella olivacea	Guache		NT	
Carnivora	Mustelidae	Mustela felipei	Comadreja		VU	
Carnivora	Felidae	Leopardus tigrinus	Gato montes		VU	
Carnivora	Felidae	Panthera onca	Tigre		NT	I
Perissodactyla	Tapiridae	Tapirus pinchaque	Danta de páramo	VU	EN	
Artiodactyla	Tayassuidae	Tayassu pecari	Cafuche		VU	
Artiodactyla	Cervidae	Pudu Mephistophiles	Venado enano		VU	
Artiodactyla	Cervidae	Mazama rufina	Soche de páramo		VU	
Rodentia	Sciuridae	Notosciurus pucheranii	Ardilla		DD	
Rodentia	Dinoyidae	Dinomys branickii	Guagua loba	VU	VU	

Fuente: (Corporación Autónoma del Alto Magdalena - CAM, Universidad Distrital Francisco José de Caldas, 2017-2018).

Dentro de las especies endémicas que se encuentran presentes en el polígono propuesto para Cerro banderas se determinó la presencia del primate Lagothrix

lagothricha lugens con distribución marcada dentro del territorio colombiano, encontrándose preferiblemente en bosques primarios desde tierras bajas hasta altitudes de 3.000 m, extendiéndose hacia el norte a lo largo de las laderas orientales de la Cordillera Oriental (Tabla 36). Actualmente esta especie de primate se encuentra incluido en la categoría de Peligro Crítico CR, ya que se espera que sus poblaciones disminuyan sustancialmente en los próximos años, debido principalmente a los efectos de la pérdida de hábitat y la caza (Stevenson, 2008).

Tabla 36. Listado de especies de mamíferos endémicos de Colombia presentes en Cerro Banderas Oio Blanco

Orden	Familia	Especie	Nombre común	Endemismo
Primates	Atelidae	Lagothrix lagotricha lugens	Churuco	Х
Primates	Cebidae	Aotus cf. griseimembra	Mono lechuza	X

Fuente: (Solari, y otros, 2013); (Ramírez y otros, 2016).

7.10.3 Composición y riqueza de Aves

Los órdenes más representativos son Passeriformes con (67) especies, seguido de Apodiformes (22), Columbiformes (10), Caprimulgiformes, Charadriiformes, y Psittaciformes con (7), los restantes (9) órdenes cuentan con (2) a (5) especies (*Figura 36*). En cuanto a la distribución de especies por familia Trochilidae es quien tiene un valor más alto con (22) especies seguido de Tharaupide con (19), Columbidae con (10), Furnariidae, y Psittacidae con (7), Strigidae y Tyrannidae con (6), todas las demás familias tienen una baja representación de especies (Figura 37).

La riqueza de aves del polígono propuesto para Cerro banderas ojo blanco presenta una alta variedad de especies, dentro de estas se resalta la presencia de aves de la familia Columbidae quien ocupa el segundo lugar con mayor cantidad de especies, situación que puede ser explicada debido a que este tipo de aves poseen hábitos generalistas, y a su vez son oportunistas en cuanto a que suelen aprovecharse de las transformaciones de los ecosistemas, al igual que ellas algunas especies como lo es Zonotrichia capensis, Turdus fuscater y Pyrocephalus rubinus poseen una alta

adaptabilidad y emplean los nuevos recursos que son ofrecidos por los agroecosistemas (CONIF - CAM, 2007).

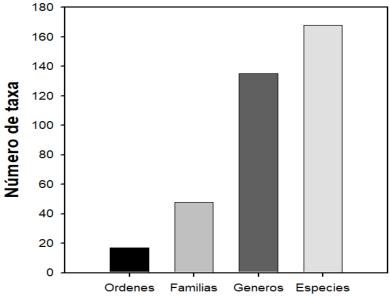


Figura 36. Número de órdenes, familias, géneros y especies de Aves registrados en el polígono propuesto para Cerro Banderas Ojo Blanco.

Fuente: (Corporación Autónoma del Alto Magdalena - CAM, Universidad Distrital Francisco José de Caldas, 2017-2018).

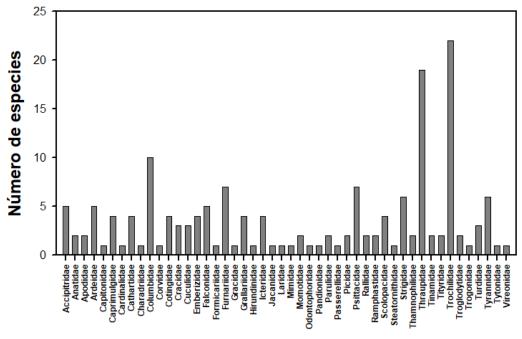


Figura 37. Riqueza específica de las familias de aves registradas en el polígono propuesto para Cerro Banderas Ojo Blanco.

Fuente: (Corporación Autónoma del Alto Magdalena - CAM, Universidad Distrital Francisco José de Caldas, 2017-2018).

Las aves al igual que los mamíferos poseen un importante papel ecosistémico, se ha dicho que aquellas especies frugívoras son efectivos dispersores de semillas incidiendo en la sucesión natural de los bosques, entre ellas se encuentran algunas especies de la familia Thraupidae (Tangaras), Cotingidae (Cotingas), Pipridae (Saltarines) y Cracidae (Guacharacas), que a su vez suelen alimentarse de plantas de la familia Rubiaceae, Melastomataceae, Moraceae, Urticaceae entre otras. Otras especies como las de los colibríes (Trochilidae) y mieleros (Thraupidae) permiten la reproducción y flujo genético de algunas de plantas a través de la polinización.

Las especies de aves de las familias Ardeidae, Rallidae, Scolopacidae y algunas familias del orden Passeriforme como Furnaridae, Formicariidae, Rhinocryptidae, Tyranidae e Hirundinidae, suelen alimentarse especialmente de artrópodos, ejerciendo de esta manera un control biológico sobre estas poblaciones, al igual que lo hacen las especies de aves carnívoras de las que familias Accipitridae, Falconidae, Strigidae y Tytonidae que tienen un activo consumo de vertebrados (CONIF - CAM, 2007).

7.10.4 Especies vedadas, endémicas o amenazadas, con valor comercial, científico y cultural, en Aves

La continúa destrucción y fragmentación de los hábitats naturales de algunas especies de aves ha llevado a la disminución de sus poblaciones, poniendo en peligro a algunas de ellas. En Colombia se reportan actualmente alrededor de (56) especies que se encuentran en alguna categoría de amenaza, no solo por las afectaciones a su hábitat sino también por la presión selectiva ocasionada por la cacería y el tráfico de animales para mascota.

En el polígono propuesto para Cerro banderas un total de (9) especies que se encuentran en categoría EN (en peligro), VU (vulnerable) y NT (casi amenazado), lo que es un 16% de la totalidad de aves amenazadas para el país (Tabla 37). Dentro de

este listado se encuentra una especie que debe ser motivo de planes de conservación debido a que se encuentra en un alto peligro de extinción EN, este es el Atlapetes de anteojos (*Atlapetes flaviceps*) quien por poseer un rango y una población muy pequeña se ve fuertemente afectada por las transformaciones de su hábitat, esta especie endémica colombiana se encuentra en la ladera de los Andes centrales y occidentales de nuestro país.

Tabla 37. Listado de especies de aves amenazadas con ocurrencia en el polígono

propuesto para Cerro Banderas Ojo Blanco

ριορασσίο ρατο						9
Orden	Familia	Especie	Nombre común	LIBRO ROJO	tegoría UIC N	CIT ES
Struthioniformes	Tinamidae	Tinamus osgoodi	Tinamú negro	EN	VU	
Cathartiformes	Cathartidae	Vultur gryphus	Cóndor de los Andes	EN	NT	Ш
Charadriiformes	Scolopacidae	Gallinago nobilis	Caica Paramuna		NT	
Passeriformes	Emberizidae	Atlapetes flaviceps	Atlapetes de anteojos	EN	EN	
Passeriformes	Grallariidae	Grallaria alleni	Tororoi bigotudo	EN	VU	
Passeriformes	Grallariidae	Grallaria rufocinerea	Cholongo	VU	VU	
Passeriformes	Icteridae	Hypopyrrhus pyrohypogaster	Chango colombiano	EN	VU	
Passeriformes	Thraupidae	Saltator cinctus	Gorrión collarejo	VU	NT	
Passeriformes	Thraupidae	Dacnis hartlaubi	Mielero turquesa	VU	VU	
Apodiformes	Trochilidae	Anthocephala floriceps	Colibrí cabecicastaño	VU	VU	II
Columbiformes	Columbidae	Leptotila conoveri	Caminera Tolimense		EN	
Psittaciformes	Psittacidae	Ognorhynchus icterotis	Loro orejiamarillo	EN	EN	
Psittaciformes	Psittacidae	Hapalopsittaca amazonina	Cotorra montañera	VU	VU	
Psittaciformes	Psittacidae	Leptosittaca branickii	Perico paramuno	VU	VU	

Fuente: (Corporación Autónoma del Alto Magdalena - CAM, Universidad Distrital Francisco José de Caldas, 2017-2018)

De las 1.912 especies de aves reportadas para Colombia se ha determinado que existe un total de 308 aves endémicas es decir aquellas cuya área de distribución es pequeña o se encuentra restringida a los límites políticos de un país y casi endémicas cuando presenta la mitad o más de su distribución en un país y extensiones menores hacia uno o más países vecinos (Chaparro S. , 2017). En el polígono propuesto para Cerro banderas se encuentran (26) especies con esta categoría lo que equivale al 8,4% de la totalidad de endemismo reportado en el país. Es importante mencionar que muchas de estas especies actualmente a su vez se encuentran en alguna categoría de amenaza

en nuestro país, por lo cual se debe promover más iniciativas de protección de sus hábitats, además de hacer un seguimiento continuo a estas poblaciones (Tabla 38).

Tabla 38. Listado de especies de Aves endémicas y Casi endémicas del polígono

propuesto para Cerro Banderas Oio Blanco

propuesto para Cerro Barideras Ojo Biarico					
CLASE	ESPECIE	NOMBRE COMÚN	CATEGORÍA		
Aves	Atlapetes flaviceps	Atlapetes de anteojos	E		
Aves	Atlapetes fuscoolivaceus	Gorrión	Е		
Aves	Grallaria alleni	Tororoi bigotudo	E		
Aves	Hypopyrrhus pyrohypogaster	Chango colombiano	Е		
Aves	Dacnis hartlaubi	Dacnis turquesa	E		
Aves	Amazilia cyanifrons	Amazilia	Е		
Aves	Piranga rubriceps	Piranga cabeciroja	CE		
Aves	Myioborus ornatus	Abanico Cariblanco	CE		
Aves	Heliangelus exortis	Heliángelus Belicoso	CE		
Aves	Cyanolyca armillata	Urraca de cuello negro	CE		
Aves	Cinnycerthia unirufa	Cucarachero rufo	CE		
Aves	Tinamus osgoodi	Tinamú negro	CE		
Aves	Nothocercus julius		CE		
Aves	Gallinago nobilis	Caica Paramuna	CE		
Aves	Leptotila conoveri	Caminera Tolimense	CE		
Aves	Hapalopsittaca amazonina	Cotorra montañera	CE		
Aves	Pionus chalcopterus	Cortorra maicera	CE		
Aves	Ognorhynchus icterotis	Perico Palmero, Loro orejiamarillo	CE		
Aves	Grallaria rufocinerea	Cholongo	CE		
Aves	Andigena nigrirostris	Terlaque	CE		
Aves	Thamnophilus multistriatus	Batará	CE		
Aves	Saltator cinctus	Gorrion collarejo	CE		
Aves	Tangara labradorides	Tangara	CE		
Aves	Anthocephala floriceps	Colibrí cabecicastaño	CE		
Aves	Campylopterus falcatus	Ala de sable	CE		
Aves	Chlorostilbon poortmani	Esmeralda rabicorta	CE		

E= Endémicas. CE= Casi Endémicas.

Fuente: (Chaparro, Echeverry, Córdoba, & Sua, 2013).

7.10.5 Composición y Riqueza de Anfibios y Reptiles

Se registraron (28) especies de anfibios; (27) de ranas y (1) de cecilia (Anexo 3), representadas en dos órdenes, (5) familias y (5) géneros. En el caso de los reptiles, se reportan (20) especies; (8) de lagartos y (12) de serpientes, distribuidas en un orden, (8) familias y (17) géneros (CONIF - CAM, 2007) (Corporación Autónoma del Alto Magdalena - CAM, Universidad Distrital Francisco José de Caldas, 2017-2018) (Figura 38).

Colombia es el segundo país con mayor diversidad de anfibios del mundo, posee alrededor de 820 especies descritas (Acosta, 2017), de tal forma que el área comparativamente con el territorio nacional posee al menos el 2,93% de esa diversidad. Por otro lado, los reptiles en Colombia están representados por alrededor de 636 especies, y en términos comparativos con la diversidad nacional el área del polígono propuesto para Cerro Banderas Ojo Blanco posee el 3,2% de esa riqueza. Sin embargo, estos valores podrían ser más significativos ya que existen pocos estudios consolidados con anfibios y reptiles para la zona, además, la vegetación presente en el polígono propuesto para Cerro Banderas Ojo Blanco da lugar a variados microhábitats como los bosques de galería, el sotobosque del bosque andino con lianas y muchas epifitas como bromelias que sirven de refugio y sitio de postura a varias especies de anfibios (CONIF - CAM, 2007).

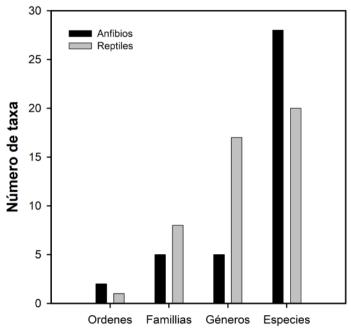


Figura 38. Número de órdenes, familias, géneros y especies de Anfibios y Reptiles registrados en Cerro Banderas Ojo Blanco, departamento del Huila. Fuente: (Corporación Autónoma del Alto Magdalena - CAM, Universidad Distrital Francisco José de Caldas, 2017-2018).

En Anfibios, Craugastoridae constituye la familia más predominante representada por (12) especies. Seguido de la familia Bufonidae y Centrolenidae con (4) especies, las familias Hemiphractidae e Hylidae con (2) especies y Caecilidae, Dendrobatidae y

Leptodactylidae presentadas por (1) sola especie (Figura 39). La familia Craugastoridae con el género *Pristimantis* es el más diverso, esto podría estar atribuido a las condiciones climáticas como la humedad en bosques andinos, ya que esta condición favorece la presencia de especies con modo reproductivo terrestre (Lynch y otros, 1997). La presencia de éste género de ranas también puede deberse a su gran representatividad a través del gradiente latitudinal del norte de los Andes (Lynch, 1986). Todas las especies de anfibios registradas están asociadas a bosques riparios característicos de los orobiomas de bosque subandino y andino.

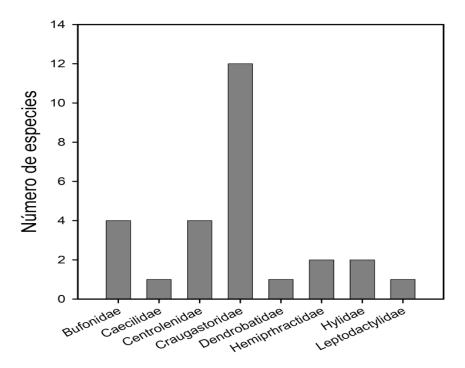


Figura 39. Distribución de la riqueza específica de familias de anfibios registrados en Cerro Banderas Ojo Blanco, departamento del Huila.

Fuente: (Corporación Autónoma del Alto Magdalena - CAM, Universidad Distrital Francisco José de Caldas, 2017-2018).

En el caso de los reptiles Colubridae (Serpentes) constituye la familia más diversa representada por (10) especies. Seguido de la familia Gymnophtalmidae (Lacertilia) con (4) especies, Dactyloidae, Gekkonidae, Sphaerodactylidae (Lacertilia), Elapidae y Viperidae (Serpentes) se encuentran presentadas por 1 sola especie (Figura 40).

El suborden Serpentes presenta la mayor riqueza de especies sobre el suborden Lacertilia siendo Colubridae la familia más abundante, la cual está constituida por aquellas serpientes inofensivas de escamas cefálicas conspicuas y predominantemente diurnas, benéficas para la agricultura por el control que ejercen sobre las poblaciones de roedores y porque algunas especies son depredadoras de serpientes venenosas, el otro grupo de reptiles de mayor representatividad lo conforman los saurios de la familia Gymnophtalmidae, grupo constituido por lagartos que pasan desapercibidos por sus hábitos minadores o fosoriales que se alimentan exclusivamente de invertebrados.

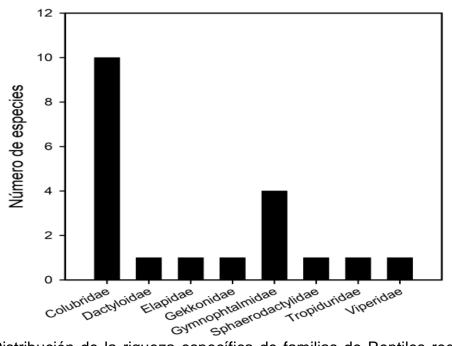


Figura 40. Distribución de la riqueza específica de familias de Reptiles registrados en Cerro Banderas Ojo Blanco, departamento del Huila.

Fuente: (Corporación Autónoma del Alto Magdalena - CAM, Universidad Distrital Francisco José de Caldas, 2017-2018).

7.10.6 Especies vedadas, endémicas o amenazadas, con valor comercial, científico y cultural, en Anfibios y Reptiles

El área de estudio se constituye en un hábitat crítico para trece especies del orden Anura (Tabla 39). la rana arlequín *Atelopus simulatus*, se encuentra en Peligro crítico, de las 96 especies que conforman el género *Atelopus*, el 90% se encuentran en peligro de extinción y 75% de los que viven por encima de los 1000 msnm se consideran

extintos. El *Batrachochytrium dendrobatidis* (Bd), conocido como hongo quítrido, las truchas y la deforestación, serían algunos de los responsables de la desaparición del género *Atelopus* en el neotrópico. Igualmente, especies como *Rhinella nicefori, Osornophryne percrassa y Pristimantis hernandezi* están amenazadas debido a la destrucción de su hábitat y a que su rango de ocurrencia es muy restringido.

Tabla 39. Listado de especies de anfibios amenazadas con ocurrencia en el polígono

propuesto para Cerro Banderas Ojo Blanco

			N 1 /	Categoría
Orden	Familia	Especie	Nombre común	UICN
Anura	Bufonidae	Atelopus simulatus	Rana Arlequín	CR
Anura	Bufonidae	Osornophryne bufoniformis	Sapo	NT
Anura	Bufonidae	Osornophryne percrassa	Sapito de Páramo	VU
Anura	Bufonidae	Rhinella nicefori	Sapo Picudo Colombiano	EN
Anura	Centrolenidae	Centrolene buckleyi	Rana de cristal gigante	VU
Anura	Centrolenidae	Nymphargus garciae	Rana de Cristal	VU
Anura	Centrolenidae	Nymphargus posadae	Rana de Cristal	VU
Anura	Hemiphractidae	Gastrotheca aeromaculata	Rana marsupial	NT
Anura	Craugastoridae	Pristimantis hernandezi	Rana ladrona de Hernández	EN
Anura	Craugastoridae	Pristimantis petersi	Rana de Peters	VU
Anura	Craugastoridae	Pristimantis supernatis	Rana Ladrona del Carmelo	VU
Anura	Craugastoridae	Pristimantis tamsitti	Rana Ladrona de San Adolfo	NT
Anura	Craugastoridae	Pristimantis vicarius	Rana Ladrona de Coconuco	NT

Se reportan (13) especies de Anfibios endémicos de Colombia en Cerro Banderas Ojo Blanco (Tabla 40). Esto es atribuible a que en este flanco de la cordillera al parecer durante las glaciaciones o periodos fríos del Plioceno y Pleistoceno se mantuvo como un refugio más húmedo que el corredor árido del flanco occidental de la Cordillera Oriental en el alto valle del Magdalena, lo cual permitió que muchas poblaciones relictuales de ambientes húmedos diversificaran como es el caso típico de los anfibios que comparativamente son más abundantes y con una alta diversidad y singularidad a nivel de endemismos (CONIF - CAM, 2007). Cabe resaltar que no se reportan especies de reptiles endémicas para el polígono propuesto para Cerro Banderas Ojo Blanco.

Tabla 40. Especies de Anfibios Endémicas presentes en el polígono propuesto para Cerro Banderas Oio Blanco, departamento del Huila

Orden	Familia	Especie	Nombre común	Categoría
				Endemismo
Anura	Bufonidae	Atelopus simulatus	Rana Arlequín	Χ
Anura	Bufonidae	Osornophryine percrassa	Sapito de Páramo	X
Anura	Bufonidae	Rhinella nicefori	Sapo picudo	Χ
Anura	Centrolenidae	Centrolene paezorum	Rana de cristal gigante	Χ
Anura	Centrolenidae	Nymphargus garciae	Rana de cristal	Χ
Anura	Hemiphractidae	Gastrotheca aeromaculata	Rana marsupial	X
Anura	Craugastoridae	Pristimantis brevifrons	Rana de Páramo	Χ
Anura	Craugastoridae	Pristimantis hernandezi	Rana ladrona de Hernández	X
Anura	Craugastoridae	Pristimantis leptolophus	Rana Ladrona de Volcán	X
Anura	Craugastoridae	Pristimantis racemus	Rana Ladrona de Las Hermosas	X
Anura	Craugastoridae	Pristimantis tamsitti	Rana Ladrona de San Adolfo	Χ
Anura	Craugastoridae	Pristimantis boulengeri	Rana de Las Bromelias	Χ
Anura	Craugastoridae	Pristimantis vicarius	Rana Ladrona de Coconuco	X

Fuente: (Corporación Autónoma del Alto Magdalena - CAM, Universidad Distrital Francisco José de Caldas, 2017-2018).

7.11 CARACTERIZACIÓN SOCIAL, ECONÓMICA Y CULTURAL

El polígono propuesto abarca una superficie total de 22.073,79 ha, comprendiendo cuatro (4) municipios así: 56,4% Íquira, 36,6% Teruel, 5,0% Santa María y 2,0% Palermo, la caracterización social, económica y cultural se abordará con base en la caracterización por cada uno de los municipios.

7.11.1 Población

7.11.1.1 Tamaño de la Población

La población del entorno regional de los cuatro (4) municipios sobre los cuales tiene jurisdicción el área protegida (Teruel, Íquira, Santa María y Palermo) es de 67.397 habitantes (teniendo en cuenta el área completa de los 4 municipios), de estos el 39%

se ubican en el área urbana y el 61% en la zona rural, donde la estructura poblacional se encuentra distribuida en 52% son hombres y 48% mujeres. Su población potencialmente activa entre los 15 y 59 años corresponde al 60%, el restante se considera inactiva Tabla 41.

Tabla 41. Población de los municipios sobre los cuales tiene jurisdicción el área

protegida

POBLACIÓN (2017)			POBLACIÓN	GENE	RO	ACTIVIDAD DE LA POBLACIÓN		
MUNICIPIO	TOTAL	URBANA	RURAL	(2005)	HOMBRE	MUJER	POTENCIAL- MENTE ACTIVA (15-59 Años)	INACTVA (<15 y >59)
Íquira	13.178	2.398	10.780	1.668	6.718	6.460	7.828	5.350
Teruel	8.838	4.429	4.409	119	4.605	4.233	5.233	3.604
Palermo	33.825	16.381	17.444	24	17.311	16.514	20.170	13.652
Santa María	11.556	3.284	8.272	834	6.193	5.363	6.919	4.635
Total	67.397	26.492	40.905	2.645	34.827	32.570	40.149	27.241

Fuente: (Departamento Nacional de Planeación - DNP, 2018).

Según la dinámica poblacional, el DANE (2017) proyectó que para el año 2020 la población de los cuatro municipios que intervienen en el área protegida tendrá un incremento del 4,17% con respecto al año 2017, alcanzando los 70.205 habitantes (Tabla 42).

Tabla 42. Población proyectada al año 2020 en los municipios sobre los cuales tiene

jurisdicción el área protegida.

	POBLACIÓN PROYECTADA									
MUNICIPIO	2018	2018 2019 2020								
	TOTAL	TOTAL	URBANA	RURAL	TOTAL					
Íquira	13.403	13.624	2.418	11.414	13.832					
Teruel	8.881	8.919	4.497	4.463	8.960					
Palermo	34.401	34.979	17.309	18.260	35.569					
Santa María	11.651	11.746	3.389	8.455	11.844					
Total	68.336	69.268	27.613	42.592	70.205					

Fuente: (Departamento Administrativo Nacional de Estadistica - DANE, 2005).

Según la caracterización socioeconómica realizada por la CAM en los años 2014 y 2015, existen 207 familias dentro del polígono propuesto, en 262 predios con vivienda. En esos predios se identificaron 769 personas de los cuales el 57% son hombres.

7.11.1.2 Estructura Familiar

Las familias están conformadas por un número de 4 a 5 personas, principalmente entre los 15 y 50 años, de los cuales aproximadamente el 75% son hombres y el 25% mujeres; con nivel de escolaridad generalmente hasta básica primaria. La actividad económica principal es la agricultura y la mano de obra disponible depende principalmente del hombre del hogar y de los jóvenes mayores de 14 años, con una dedicación de 8 a 12 horas al día. La mujer en algunos casos aporta mano de obra en campo principalmente en momentos diferentes a la época de cosecha, pero su dedicación principal son las labores del hogar y la alimentación de los trabajadores como por ejemplo los recolectores de café. La fuente de energía más empleada para la preparación de los alimentos es la leña, con un consumo de 6 a 15 arrobas semanales (ONF ANDINA, 2016).

7.11.1.3 Grupos Étnicos

De acuerdo a la respuesta dada por la Agencia Nacional de Tierras (ANT) mediante oficio nro. 20185000758631 del 5 de septiembre de 2018, no existe Resguardos Indígenas Legalizados en el Polígono propuesto (Figura 41), no obstante, hay una solicitud de legalización donde se pretende la ampliación del Resguardo Huila Río Negro. Tampoco existen títulos colectivos de comunidades negras, ni solicitudes. Según la Agencia Nacional de Tierras para el año 2018, en el polígono propuesto no existe traslape con ninguna comunidad étnica.

Teniendo en cuenta el área completa de los 4 municipios sobre los cuales tiene jurisdicción el polígono propuesto (Teruel, Íquira, Santa María y Palermo), la población

étnica era para el año 2005 de 2.645 personas, distribuidas en 1.668 en Íquira, 119 en Teruel, 24 en Palermo y 834 en Santa María (Departamento Nacional de Planeación - DNP, 2018).

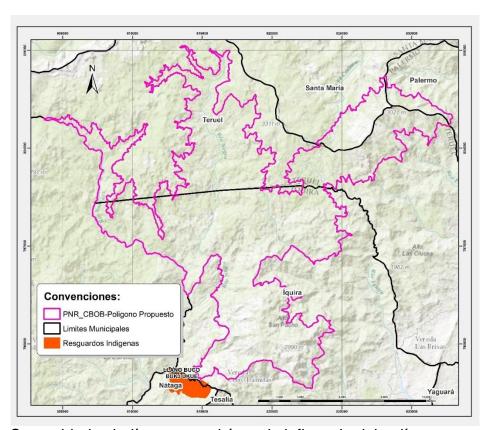


Figura 41. Comunidades indígenas en el área de influencia del polígono propuesto

7.12 ANÁLISIS DE ACTORES

En el área de estudio existen diferentes grupos y organizaciones que vienen participando en proceso de desarrollo local y regional, entre las cuales se destacan las organizaciones gremiales, las organizaciones no gubernamentales, empresas comunitarias, comités municipales, comunidades campesinas, entre otras. Por medio de estas, se adelantan diferentes actividades de capacitación, participación, coordinación y sensibilización en los distintos procesos de protección y promoción de los recursos naturales del área.

La clasificación de actores relacionados con el área protegida ha considerado algunas organizaciones que intervienen en los ámbitos de gestión en los municipios de Íquira, Teruel, Palermo y Santa María, y fueron clasificados como Actores institucionales, comunitarios y sectores productivos.

Actores institucionales

Son las entidades públicas del orden nacional, departamental y local; con jurisdicción en el área, entre ellas las alcaldías municipales, organismos de la seguridad pública, la administración de justicia (fiscalía, juzgado y sistema carcelario), los concejos municipales, los organismos de control, Parques Nacionales Naturales de Colombia, el Ministerio de Ambiente y Desarrollo Sostenible, gobernación del Huila, agencia de desarrollo rural, aguas del Huila, la agencia nacional de infraestructura. La gestión se complementa con las directrices, políticas y acciones adelantadas por la Corporación Autónoma Regional del Alto Magdalena – CAM.

Actores Comunitarios

Las juntas de acción comunal constituyen el tipo de organización más difundida y de mayor presencia, cuentan con una gran cantidad de miembros activos que se han concentrado en trabajar para beneficio de sus propias comunidades, para los asuntos ambientales se han fortalecido las comisiones ambientales. También existen, aunque con una menor fuerza las juntas administradoras de acueductos, que por lo general están conformadas con algunas de las mismas personas de las juntas de acción comunal. Dentro de la jurisdicción de las veredas que están dentro del polígono propuesto existen 9 acueductos veredales y 4 acueductos regionales, según información de aguas del Huila. También se consideran muy relevantes las dinámicas de colectivos temáticos, como lo son los Consejos Municipales de Planeación Territorial; los Comités Interinstitucionales de Educación Ambiental y los Comités Locales de Áreas Protegidas, que operan en los diferentes municipios.

Como entidades ambientales se resaltan FUSANDES, el Grupo de Monitoreo del Área Protegida Santa María Huila (APSH), la Red de Visión Verde, y el apoyo de reservas naturales de las sociedad civil.

Actores de Sectores Productivos

Son Comité de Ganaderos del Huila, Comité de Cafeteros del Huila, asociaciones de productores rurales, FENALCE, ASHOFRUCOL, Asociación de frutales de clima frio, entre otros, los cuales deben velar por establecer sistemas de producción sostenibles en el área protegida.

Dentro de los actores de sectores productivos, existen algunas organizaciones productivas locales legalmente constituidas, como:

- AGROMATH (Grupo Asociativo de Mora y Granadilla de Teruel),
- Asociación Agropecuaria El Pedernal (Teruel),
- ASPATRU (Teruel),
- Grupo Asociativo Sweet Fruit Samaria (Santa María),
- Grupo Cafetero asociación agropecuaria San Joaquín (Santa María),
- Asociación de Productores Agropecuarios Los Positivos (Íquira),
- Asociación Agropecuaria CAFEFRUT (Íquira),
- Asociación Agropecuaria Multifrutas Ecológica del Huila (Íguira),
- ATCH (Asociación de Trabajadores Campesinos del Huila- Íguira),
- Asociación Pecuaria ASOTROSUR (Íquira),
- APROCAPAL (Asociación de productores de Cacao de Palermo),
- Asociación ambiental y agropecuaria Emprendedores de Palermo.

7.13 INFRAESTRUCTURA Y SERVICIOS BÁSICOS

A partir de la información registrada en el sistema de Información Regional (SIR Huila), la infraestructura de tipo vivienda, construida en los municipios jurisdicción del área

protegida, se encuentran ubicadas el 39% en la cabecera municipal, el 12% en el centro poblado y el 49% en la zona rural (Tabla 43).

Tabla 43. Distribución de la población por tipo de vivienda en el entorno Regional

		Cabecera municipal	Centro poblado		R	ural disper	SO	
MUNICIPIO	Total	Total	Total	Casa o apto	Cuarto	Otro Tipo de Vivienda	Casa Indígena	Total
Íquira	8.816	2.504	899	219	284	3.043	1.867	5.413
Palermo	24.023	11.188	4.923	295	929	3.064	3.624	7.912
Santa María	10.386	2.186	284	3.548	1.379	2.382	607	7.916
Teruel	8.398	4.274	29	314	271	1.630	1.880	4.095
Total	51.623	20.152	6.135	4.376	2.863	10.119	7.978	25.336

Fuente: (Sistema de información regional - SIR, 2017)

De las 14.352 viviendas de los 4 municipios, se estima que el 97% de ellas corresponden a zonas residenciales ubicadas entre los estratos 0, 1 y 2 (Tabla 44).

Tabla 44. Distribución de las viviendas en el entorno regional por estrato social

		Estrato								
Municipios	Total	0	1	2	3	4	5	6		
Íquira	2.552	369	1.380	791	12	0	0	0		
Palermo	7.042	532	3.762	2.363	383	0	2	0		
Santa María	2.779	166	1.552	1.041	19	1	0	0		
Teruel	1.979	107	844	952	73	3	0	0		
Total	14.352	1.174	7.538	5.147	487	4	2	0		

Fuente: (Sistema de información regional - SIR, 2017).

En cuanto a la disponibilidad de Servicios públicos (Tabla 45), el nivel de cobertura es de 48,75%. Donde el 92% de las viviendas tiene cobertura del servicio de energía eléctrica y un 57% cobertura de acueducto, mientras que, solamente el 5% de las viviendas tiene cobertura de teléfono. Además, el 51% de las viviendas no cuentan con servicio de alcantarillado y un 61% no cuentan con el servicio de gas natural domicilio, lo que se transforma en un mayor uso de leña para la cocción de los alimentos, a su vez, el 51% de las viviendas no cuentan con recolección de basuras, lo que obliga a la realización de quemas de basuras a cielo abierto.

Tabla 45. Disponibilidad de servicios públicos en viviendas del entorno regional

	Energía Eléctrica		Alcantarillado		Gas Natural Domiciliario		Teléfono		Recolección de Basura		Acueducto	
Municipios	SI	NO	SI	NO	SI	NO	SI	NO	SI	NO	SI	NO
Íquira	2.150	402	988	1.564	384	2.168	70	2.482	948	1.604	1.067	1.485
Palermo	6.628	414	4.304	2.738	3.992	3.050	563	6.479	4.341	2.701	4.989	2.053
Santa María	2.613	166	735	2.044	287	2.492	50	2.729	778	2.001	1.020	1.759
Teruel	1.884	95	994	985	959	1.020	84	1.895	1.030	949	1.124	855
Total	13.275	1.077	7.021	7.331	5.622	8.730	767	13.585	7.097	7.255	8.200	6.152

Fuente: (Sistema de información regional - SIR, 2017).

La infraestructura educativa está conformada por un total de 140 instituciones, centros y sedes educativas, de las cuales el 88,57% se encuentran ubicadas en el sector rural y el 11,43% en el sector urbano (Tabla 46).

Tabla 46. Instituciones educativas oficiales y sedes por municipios del área protegida

Municipios	Institución educativa	Instituc educa		Total Sedes	Sedes		
		Urbano	Rural		Urbano	Rural	
Íquira	4	1	3	27	2	25	
Palermo	2	2	0	45	4	41	
Santa María	4	1	3	35	3	32	
Teruel	3	1	2	20	2	18	
Total	13	5	8	127	11	116	

Fuente: (Sistema de información regional - SIR, 2017).

7.14 TENENCIA DE LA TIERRA

7.14.1 Análisis predial y ocupación

Los predios identificados al interior del polígono propuesto se caracterizaron mediante información predial del IGAC; identificando en el polígono propuesto 373 predios, de los

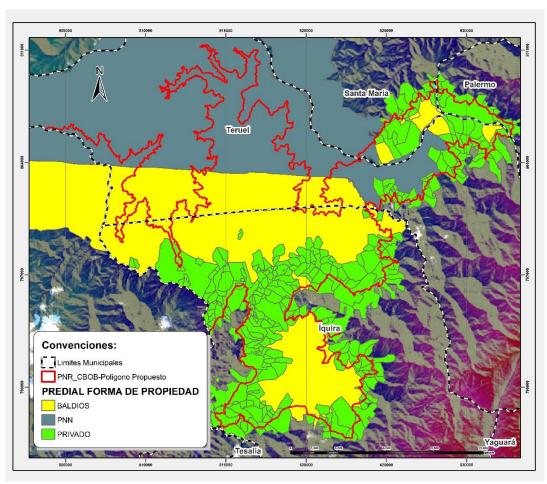
cuales 19 son predios Baldíos, 2 predios son de Parques Naturales Nacionales (PNN) y 352 aparecen como predios privados.

Se realizó la cuantificación de los predios de los municipios que intervienen en el polígono propuesto, encontrando que el municipio que mayor número de predios tiene es Íquira con 249, mientras el municipio que menos tiene es Palermo con 25 (Tabla 47).

Tabla 47. Número de predios en la zona de estudio según el IGAC

Municipio	Predios completame nte dentro	Áreas Completame nte dentro	Predios parcialmen te dentro	Áreas parcialmen te dentro	Total predios	Área Total
Íquira	124	2.780,81	125	12.182,79	249	14.963,60
Palermo	15	39,58	10	412,97	25	452,55
Santa María	19	342,14	20	665,78	39	1.007,92
Teruel	26	682,28	34	4.967,44	60	5.649,72
Total	184	3.844,81	189	18.228,98	373	22.073,79

Fuente: IGAC, 2017.


Como predios del estado están los 19 predios Baldíos con una extensión de 9.487,4 ha (43,0%) y 4.576,8 ha (20,7%) del PNN Nevado del Huila (Figura 42, Tabla 48). Se aclara que en la base de datos predial aparecen con una división de 10 predios, pero según comunicación de PNN (oficio No. 20192400020171 del 10 de abril de 2019), estos solamente corresponden a 2 cedulas catastrales.

En relación con los predios baldíos, según comunicación de la agencia nacional de tierras (ANT) mediante oficio No. 20184300814251 del 15 de septiembre de 2018, no se encontró ningún predio baldío administrado dentro de los cuatro municipios relacionados a Cerro Banderas. Sin embargo, existen dos predios en proceso de apertura de folio de matrícula inmobiliaria.

Se aclara que según sentencia No. C-595/95 "Los baldíos son bienes públicos de la Nación catalogados dentro de la categoría de bienes fiscales adjudicables, en razón a que la nación los conserva para adjudicarlos a quienes reúnan la totalidad de las

exigencias establecidas en la ley." No hay que olvidar que los baldíos son imprescriptibles ante la ley, es decir que los baldíos "son tierras de uso público, y su propiedad no se prescribe contra la Nación de conformidad con lo dispuesto en el artículo 2519 del Código Civil".

Figura 42. Forma de propiedad de los predios. Elaborado por el Consorcio PNR 2018, basado en información de la CAM y del IGAC.

Tabla 48. Predios Baldíos y PNN Nevado del Huila

Municipio		Baldío	Baldío		
Mariicipio	Predio	Extensión (ha)	Predio	Extensión (ha)	
Íquira	4	8.945,08	0	-	
Palermo	0	-	0	-	
Santa María	10	330,27	1	83,61	
Teruel	5	212,02	1	4.493,18	
Total	19	9.487,37	2	4.576,79	

Sin embargo es de anotar que de acuerdo con el análisis de ocupación del territorio, se identificaron 299 áreas ocupadas dentro del polígono (Tabla 49, Figura 43); donde 258 están ubicados en el municipio de Íquira, 2 en el municipio de Palermo, 15 en el Municipio de Santa María y 24 en el municipio de Teruel. Para la identificación de estas áreas ocupadas se validaron los puntos de la caracterización socioeconómica realizada por CAM en 2014 y 2015, y con el apoyo de imágenes aéreas del año 2016 e imagen Sentinel 2A del 2018, bajo la metodología de fotointerpretación ubicando las viviendas y las zonas transformadas. Es de resaltar la calidad de la cartografía que permite utilizar esta metodología en la zona.

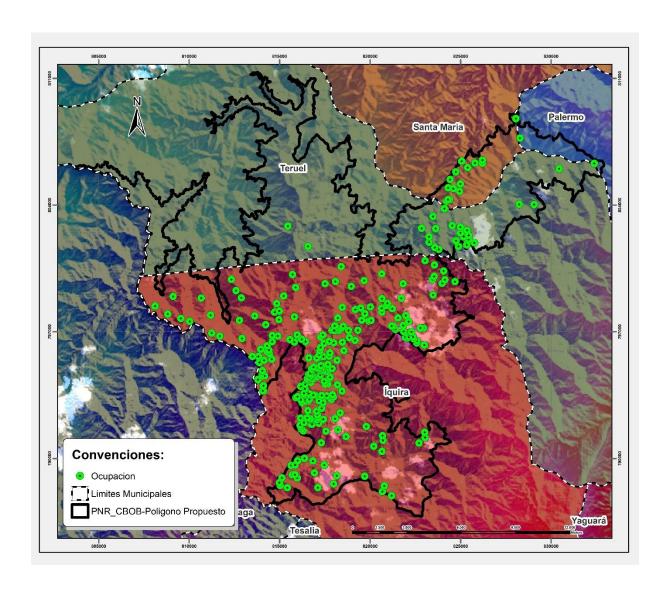


Figura 43. Ocupación del polígono propuesto.

Tabla 49. Ocupación del polígono propuesto.

Municipio	Áreas ocupadas
Íquira	258
Palermo	2
Santa María	15
Teruel	24
TOTAL	299

7.14.2 Predios adquiridos por los municipios

Según información aportada por las alcaldías municipales de Íquira, Palermo, Santa María y Teruel; dentro del polígono propuesto se han adquirido 41 predios con un área total adquirida de 1.449 ha (6,3% del polígono propuesto), con el objetivo de proteger y conservar las fuentes hídricas (Tabla 50). Esta área es aproximada, ya que se tiene la información catastral del predio que permite la georreferenciación comúnmente de la casa de cada predio, pero no de la delimitación predial, por lo que no se puede verificar si algunas hectáreas están por fuera del polígono.

Tabla 50. Predios adquiridos por los Municipios de jurisdicción de las veredas dentro

del polígono propuesto

	oligorio propues			,
No	MUNICIPIO	VEREDA	NOMBRE DEL PREDIO	ÁREA (ha)
1	Santa María	Santa Librada	Lote dos (El Alto)	25
2	Santa María	Carmen de Bolívar	Santa Rosa	28,8
3	Palermo	Horizonte	Playa Rica	10
4	Palermo	Horizonte	El Bosque (Altamira)	6,5
5	Íquira	El Carmen Rionegro	Los Cauchos	62,5
6	Íquira	Quebradón	La Tribuna	21,55
7	Íquira	Quebradón	El Cielo	35,25
8	Íquira	El Pato Rionegro	Lusitania	53
9	Íquira	El Pato Rionegro	Buenos aires	183,375
10	Íquira	El Pato Rionegro	Las Delicias	7,2375
11	Íquira	El Pato Rionegro	Alemania	98,3637
12	Íquira	El Pato	La Cascajosa	14,825
13	Íquira	San Francisco Valencia	El Paraíso	19,7924
14	Íquira	San Francisco Valencia	El Mirador	48,1093
15	Íquira	Jaho	El Reflejo	10
16	Íquira	Jaho	La Providencia	10
17	Íquira	Jaho	Lote Los Olivos	47
18	Íquira	Villa María	Lote El Mirador	17
19	Íquira	Narváez	Lote El Diamante	14,6803
20	Íquira	Los Alpes	La Gorgona	48,4
21	Íquira	Santa Rosa	Lote La Soledad	38,1875

No	MUNICIPIO	VEREDA	NOMBRE DEL PREDIO	ÁREA (ha)
22	Íquira	Santa Rosa	Lote 11 Zona de Reserva	17,9962
23	Íquira	Lejanía	El Carmelo	25,375
24	Teruel	El Pedernal- Corrales	Cartagena	50
25	Teruel	El Pedernal- Corrales	San Isidro	49
26	Teruel	Corrales	Las Nubes	50
27	Teruel	Corrales	La Primavera	50
28	Teruel	Corrales	Moscú o El Encanto	31
29	Teruel	Corrales	El Cedral	35,125
30	Teruel	Corrales	El Diamante	62,25
31	Teruel	Corrales	Los Pinos	12
32	Teruel	Pedernal	Lote 2 Manzanares 1	46,3784
33	Teruel	Pedernal	El Horizonte	49
34	Teruel	Corrales	El Huecon 1	6,8576
35	Teruel	Corrales	El Huecon 2	38,518
36	Teruel	La Mina	Las Mercedes	26
37	Teruel	Corrales	Buena Vista	7
38	Teruel	La Armenia	Lote no 3 Pinareas	25
39	Teruel	Corrales	Las nubes	50
40	Teruel	La Armenia	El roble	8,9
41	Teruel	Corrales	El Hueco	9,0245

Fuente: Alcaldías municipales de Íquira, Teruel, Palermo y Santa María; 2018.

El municipio de Íquira es el que más predios comprados con un número de 19, con una extensión de 773 ha que ha adquirido dentro del polígono, seguido del municipio de Teruel con la adquisición de 606 ha en 18 predios (Tabla 50). Esto está en concordancia con la distribución municipal del polígono propuesto para Cerro Banderas Ojo Blanco.

El artículo 111 de la Ley 99 de 1993 modificado por el artículo 210 de la Ley 1450 de 2011, dispone que se promoverá la "Adquisición de áreas de interés para acueductos municipales y regionales. Declárense de interés público las áreas de importancia estratégica para la conservación de recursos hídricos que surten de agua los acueductos municipales, distritales y regionales". Para ello "Los departamentos y municipios dedicarán un porcentaje no inferior al 1% de sus ingresos corrientes para la adquisición y mantenimiento de dichas zonas o para financiar esquemas de pago por servicios ambientales".

La compra de estos predios se realiza con el fin de contar con un recurso hídrico protegido, y que garantice su calidad y cantidad, en beneficio de las actuales y futuras generaciones. La protección, manejo, uso y conservación del agua en ecosistemas estratégicos se deben continuar con un plan de conservación, reforestación y restauración de coberturas forestales. Esta área adquirida se complementa con los 9.862 ha de terrenos baldíos que son de uso público, como se mencionó anteriormente.

Esta es una de las estrategias que se ha desarrollado para el mantenimiento y el aislamiento de las zonas de nacimientos establecidos en las diferentes cuencas hidrográficas abastecedoras de los acueductos municipales del departamento del Huila. Teniendo en cuenta los predios baldíos y los predios a nombre del PNN suman el 63,7% predios estatales. La restante área corresponde a predios privados de los que los municipios han comprado 1.449 ha, que si toda el área estuviera dentro del polígono serán 6,3% del área adicional para los predios del estado (sería 70% en total).

7.15 ACTIVIDAD ECONÓMICA

La economía de los cuatro (4) municipios del polígono propuesto, se basa en la producción agropecuaria, donde se identificaron los usos del suelo de café, mora, frijol, maíz, caña, granadilla, potrero para ganadería, rastrojo y bosques (Tabla 51). Esta tabla está basada en información de la secretaría de agricultura de la gobernación del Huila, teniendo en cuenta el área total de los 4 municipios que hacen parte del polígono propuesto para Cerro Banderas – Ojo Blanco.

Tabla 51. Producción agrícola en el área de incidencia del polígono propuesto

PRODUCTO		Áreas C	ultivadas (h	Total (ha)	Total Participación	
AGRÍCOLA	Íquira	Teruel	Palermo	Santa María	Total (IIa)	Dptal (%)
Café	2.596,8	2.829,3	2.534,2	3.096,8	11.057,1	7%
Mora	14,0	12,5	15,0	0,0	41,5	3%
Frijol tecnificado	185	45	40	1.800	2.070,0	27%
Frijol tradicional	110	32	72	65	279,0	8%
Maíz tecnificado blanco	15		45	8	68,0	4%
Maíz tecnificado amarillo	65	40	120	19	244,0	5%
Caña (Panela)	116,6	78,0	157,0	219,0	570,6	4%
Granadilla	95,5	8,5	68,0	296,0	468,0	20%

Fuente: (Secretaría de Agricultura y Minería del departamento del Huila, 2017).

El principal cultivo para la zona es el café (Tabla 52); seguido de cultivos transitorios como frijol, maíz, tomate, arroz, arveja, habichuela, hortalizas; cultivos permanentes como caña, plátano, aguacate, badea, cholupa, gulupa, guanábana, granadilla, mora, maracuyá, piña, tomate de árbol; y cultivos anuales como arracacha, cebolla junca y yuca.

Tabla 52. Producción agrícola en los cuatro municipios con jurisdicción del área protegida

	Cultivos Tra	ansitorios	Cultivos Anuales		Cultivos Permanentes y Semipermanentes				
MUNICIPIO	Área Cosechada (ha)	Producc. (Ton)	Área Cosechada (ha)	Producc. (Ton)	Área Cosechada (ha)	Producc. (Ton)	Café Área Cosechada	Café Producc. (Ton)	
Íquira	477,4	995,7	60,9	48,4	885,8	4.257,0	1.091,6	1.419,1	
Teruel	392,0	1423,7	42,0	234,5	502,4	2.199,5	2.308,0	3.000,4	
Palermo	4395,0	31052,9	75,0	450,0	830,8	5.536,3	2.038,3	2.649,8	
Santa María	1751,0	2548,9	63,0	386,0	1.272,0	6.782,0	2.491,0	3.238,3	

FUENTE: (Secretaría de Agricultura y Minería del departamento del Huila, 2017).

Con relación a la producción pecuaria que predomina es ganado bovino de doble propósito. Esto se complementa con la cría de otras especies menores, tales como aves de postura y de engorde, apicultura, cabras, ovejas, peces, entre otras; se convierte en una alternativa económica para el campesino ya que brinda seguridad alimentaria y se comercializa principalmente en el mercado local. Los datos del Observatorio de Territorios Rurales, para los cuatro municipios, se resumen en la Tabla 53 y Tabla 54.

Tabla 53. Inventario de especies pecuarias en los cuatro municipios del área protegida

		INVENT	INVENTARIO DE ESPECIES PECUARIAS					
MUNICIPIO	Bovino	Porcino	Aves de postura	Aves de engorde	Abejas (Colmenas)			
Íquira	6.759	1.250	6.000	16.000	115			
Teruel	5.962	200	1.500	11.520	20			
Palermo	25.507	950	360.000	660.000	150			
Santa María	7.804	400	1.500	18.000	165			

Fuente: (Secretaría de Agricultura y Minería del departamento del Huila, 2017).

Tabla 54. Producción Piscícola en los cuatro municipios del área protegida

	PRODUCCIÓN PISCÍCOLA									
Municipio	Tilapi	ia Roja	Tilapia Plateada Cachama		Trucha		Sábalo			
Municipio	Peso Kg	No. Alev	Peso Kg	No. Alev	Peso Kg	No. Alev	Peso Kg	No. Alev	Peso Kg	No. Alev
Íquira	265.000	380.000	0	0	5.800	5.800	5.440	6.800		
Teruel	21.000	24.000	0	0	0	0	10.010	14.300	1.390	2.780
Palermo	2.209.8	3.654.00	15.000	12.500	64.000	80.000	0	0	0	0
Santa María	16.500	20.000	0	0	0	0	12.036	25.500	0	0

Fuente: (Secretaría de Agricultura y Minería del departamento del Huila, 2017).

A continuación, se presenta la tipificación de los productores, realizada por (ONF ANDINA, 2016) en el área protegida, en donde se encuentran caracterizados los siguientes tipos de sistemas de producción:

7.15.1 Tipología café

La actividad principal de esta tipología es la producción de café. Estos predios tienen una extensión entre 2 y 4 hectáreas y se caracterizan por tener una topografía quebrada con pendientes entre 25% y 60%. Las coberturas en esta tipología son principalmente: Bosque secundario (intervenido), café con un área promedio de 2 ha por finca; y rastrojo, presente en algunos predios (ONF ANDINA, 2016).

En los predios pequeños de esta tipología, las rondas hídricas se limitan a una cobertura de rastrojo. La cobertura boscosa existente en estos predios es relictos muy pequeños; no hay madera para las necesidades del predio, solo para leña, pero con capacidad limitada. Deben recurrir a la compra de madera cuando la requieren (ONF ANDINA, 2016).

7.15.2 Tipología Caña Panelera- Café

Está conformada por productores que tienen como actividad productiva principal el cultivo de caña, de la cual reciben ingresos semanales o quincenales para el sustento

familiar y como actividad secundaria la producción de café. Esta tipología se encuentra en el intervalo altitudinal de los 1000 a 2000 msnm en las veredas que cumplen con este rango de alturas. Los predios de esta tipología cuentan con extensiones entre 1 y 8 hectáreas y se caracterizan topográficamente por tener pendientes moderadas a fuertes, entre 40 y 70%. Las coberturas presentes en esta tipología son: Bosque secundario con extensión entre 0 y 2,5 ha; café con un promedio de 2,5 ha por finca, algunas veces con especies de pancoger (plátano, yuca, maíz, fríjol), sembradas entre el cafetal; caña con un área promedio de 1 ha; y rastrojos, cuya extensión está relacionada directamente con el tamaño de la finca (ONF ANDINA, 2016).

En cuanto a la tenencia de la tierra, un 98% de la finca de esta tipología están habitadas por su propietario; un 15% de los predios de esta tipología son propiedad del productor por sucesión, un 70% fueron adquiridos por compra con escrituras y el porcentaje restante con documento de compraventa. Generalmente las viviendas son en mampostería, adecuadas con recursos propios y en ocasiones con subsidios del Gobierno; en menor proporción, se encuentran las viviendas en madera y/o bahareque. Cuentan con servicio de energía eléctrica y agua para el consumo humano, habitualmente proveniente del acueducto veredal. La mayoría cuenta con batería sanitaria y pozo séptico en funcionamiento. (ONF ANDINA, 2016).

7.15.3 Tipología café con ganadería.

Esta tipología está conformada por productores que tienen como actividad principal la producción de café y como actividad secundaria la ganadería doble propósito. Los predios de esta tipología cuentan con extensiones entre 15 y 30 hectáreas y se caracterizan topográficamente por tener pendientes moderadas a fuertes (Entre 30 y 60%). Las coberturas presentes en esta tipología son: Bosque secundario (intervenido) con extensión entre 3 y 5 ha; pastos con un área entre 7 y 17 ha; café con un promedio de 4 ha por finca con cítricos y pocos forestales asociados; caña entre 0,5 y 0,8 ha y rastrojo cuya extensión está relacionada directamente con el tamaño de la

finca, por lo tanto, puede estar o no presente (ONF ANDINA, 2016).

7.15.4 Tipología Ganadería

Esta tipología la conforman productores que tienen como actividad única y principal la ganadería doble propósito. Los predios de esta tipología cuentan con una extensión hasta de 150 hectáreas y se caracterizan topográficamente por tener pendientes fuertemente onduladas a fuertemente quebradas 12% a 50%. Las coberturas presentes en esta tipología son: Bosque secundario (intervenido) con extensión promedio de 7,5 ha (ONF ANDINA, 2016).

7.16 INVERSIONES REALIZADAS EN CERRO BANDERAS OJO BLANCO

Se realizó un acopio de la información suministrada por la Corporación Autónoma Regional del Alto Magdalena (CAM), para consolidar una base de datos de las inversiones desarrolladas a partir de la declaratoria del PNR Cerro Banderas – Ojo Blanco en la ejecución del Plan de Manejo.

Desde el año 2008 al 2016 se han invertido en el área protegida aproximadamente dos mil sesenta y seis millones ochocientos cuarenta y ocho mil ochocientos cuarenta y siete pesos (\$2.066.848.847), donde en el año 2015 se presentó la mayor inversión correspondiente a \$852.599.375 según datos obtenidos (Tabla 55).

Tabla 55. Histórico de inversiones en el área protegida.

AÑO	INVERSIÓN
2008	\$ 169.804.452
2011	\$ 216.762.235
2012	\$ 299.134.729
2013	\$ 351.076.066
2014	\$ 83.990.645
2015	\$ 852.599.375
2016	\$ 93.481.347

TOTAL \$ 2.066.848.847

De acuerdo con la metodología de análisis planteada por el equipo técnico, se identificaron 6 líneas grandes de inversión, de las cuales la más destacada es la de restauración con un porcentaje de participación del 54%, seguida de administración con un 25%, producción sostenible con un 9%, monitoreo con el 8%, 3% de preservación y 1% para ecoturismo (Figura 44).

Cuando se habla de línea de inversión de restauración se hace referencia a proyectos y convenios con el fin de proteger áreas con zonas de recarga hídrica, aislamiento de áreas para la protección-conservación de cuencas abastecedoras que nacen al interior del área protegida; en cuanto a administración se hace referencia a la prestación de servicios profesionales y de apoyo a la gestión de la Corporación Autónoma Regional del Alto Magdalena CAM para trabajar en el manejo del área protegida.

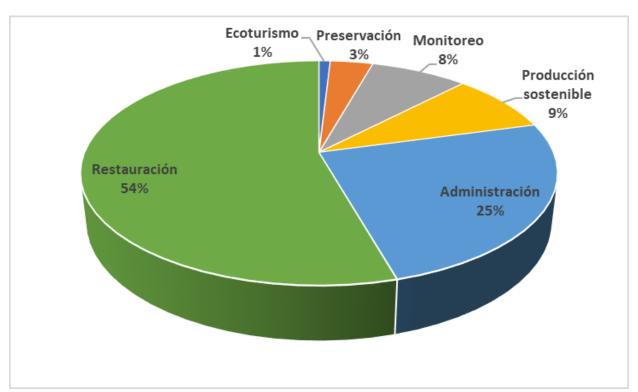


Figura 44. Participación de la inversión en el área protegida desde el 2008 al 2016

8. ANÁLISIS DE PRESIONES

8.1 DEFORESTACIÓN

La comunidad referencia tala principalmente en Carmen de Bolívar (Santa María), La Armenia (Teruel), Zaragoza (Íquira).

- CAUSAS: Las mayores presiones sobre áreas boscosas se relacionan con la ampliación de la frontera agrícola. Es notorio para cultivos como el café, la granadilla, frijol, y para la ganadería. También hay extracción de leña para el consumo doméstico y las necesidades de madera para las construcciones rurales.
- EFECTOS: Esto puede generar disminución de la oferta hídrica de las cuencas, disminución de la capacidad de la regulación climática del área, perdida de conectividad boscosa que genera pérdida de biodiversidad.

8.2 CAZA

Según la comunidad la cacería ha disminuido, sin embargo, se sigue realizando esta actividad ilegal, principalmente por gente foránea de las zonas. La actividad afecta a muchas especies, se caza: Guara, Ardilla, Gurre, Boruga, Chucha, Cusumbo, Oso de anteojos, Danta de Páramo, Venado, Zorro, Tigrillo, Culebras, Pavas, Guacharaca (Corporación Autónoma del Alto Magdalena - CAM, Universidad Distrital Francisco José de Caldas, 2017-2018).

- CAUSAS: Se caza por deporte, control de daño a cultivos o ganado, alimentación, el comercio, y en algunos casos se encuentra ligada a la tradición familiar.
- EFECTOS: Están en la disminución de la biodiversidad en el área, trastornos de las cadenas tróficas, y disminución de las poblaciones de especies amenazadas.

8.3 QUEMA

Para establecer o retomar cultivos diversos, se realiza la quema. Aunque tratan de realizar una quema controlada en algunos casos no se logra contener.

- CAUSAS: Poca concientización de los efectos negativos generados por las guemas.
- EFECTOS: se produce disminución de los bosques naturales, afectación sobre la fauna, aumento de los procesos erosivos del suelo, y afectación a las fuentes hídricas.

8.4 CONTAMINACIÓN

En los sistemas de producción establecidos se realiza contaminación por uso de agroquímicos, y por mal uso de residuos sólidos y líquidos, como es en el procesamiento del café, el estiércol de animales, aguas residuales domésticas y ausencia de un sistema de manejo apropiado de residuos sólidos. La comunidad manifiesta la necesidad de una mejor organización para la adecuada recolección de residuos sólidos y también la de materiales reciclables.

- CAUSAS: Hay ausencia de un sistema de manejo apropiado de residuos sólidos, residuos inorgánicos y de residuos de cosecha.
- EFECTOS: Estos residuos sólidos llegan a las fuentes hídricas, contaminándolas, produciendo pérdida de la calidad del agua y enfermedades por consumo el agua.

9 VÍAS Y TRANSPORTE

Entre las vías intermunicipales se cuentan con vías pavimentadas, como la de Palermo la cual cuenta con acceso directo con la ciudad de Neiva, en buen estado. La vía que comunica entre Palermo con Santa María se encuentra pavimentada, pero en mal estado. La vía entre Palermo y Teruel está pavimentada, pero en regular estado y la vía entre Teruel e Íquira está en mal estado. Las demás vías de la región son secundarias, en mal estado, la mayoría destapadas. Es por esto que se considera que la infraestructura vial es deficiente (Figura 45).

Existe una variedad de parque automotor compuesto por taxis, colectivos, bus, microbuses, busetas y camionetas de empresas como Cootranshuila, Coomotor, Pony express, Sotransvega cootransamaría y Flota Huila, con un servicio que tiene poca frecuencia, mal estado de las vías, y elevados costos de los pasajes.

La infraestructura vial al interior del polígono propuesto es escasa, lo que favorece la conservación, sin embargo, se han identificado algunas vías terciarias nuevas, que, pese a su mal estado, han facilitado la presión sobre el polígono propuesto. Vías como en la vereda La Armenia en el municipio de Teruel, y en la vereda Zaragoza del municipio de Íquira, son indicativos de la presión generada por los asentamientos existentes.

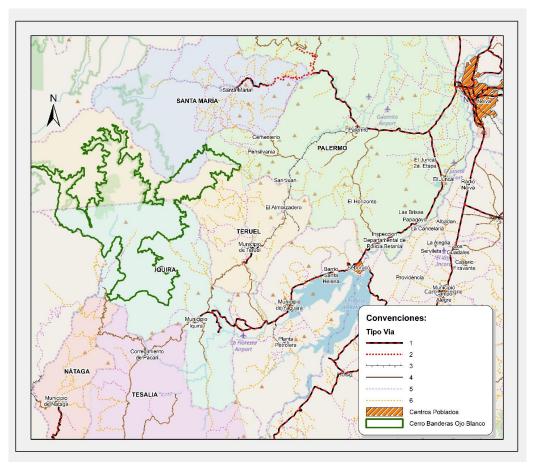


Figura 45. Red vial en la zona.

Según comunicación de la agencia nacional de infraestructura (ANI) mediante oficio No. 20182000282941 del 29 de agosto de 2018, en atención a la solicitud realizada por CAM, sobre proyectos de trazado de vías e infraestructura a desarrollarse en el departamento del Huila, se precisa que la ANI no está estructurando o proyectando infraestructura vial en el área del polígono enviado correspondiente a Cerro Banderas Ojo Blanco.

10 CAMBIO CLIMÁTICO

El cambio climático constituye una amenaza importante para la biodiversidad y los sistemas de producción del área. Se estima para finales de siglo, incrementos de temperatura en el área directa de hasta 1,8 grados y en el área de influencia de hasta 2,5 grados (Figura 46). Así mismo se espera incrementos en la precipitación de hasta el 20% de los valores actuales e incremento del 30% en la zona aledaña (Figura 47). Esto generará aumento en la intensidad de lluvias; así como periodos de sequía más extremos y prolongados; repercutiendo en el comportamiento hidrológico de los ríos, pérdida de la biodiversidad e incremento en la ocurrencia de desastres naturales.

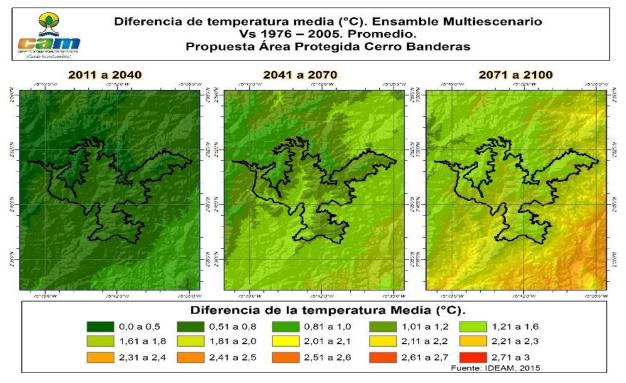


Figura 46. Cambios esperados en la temperatura para el polígono propuesto.

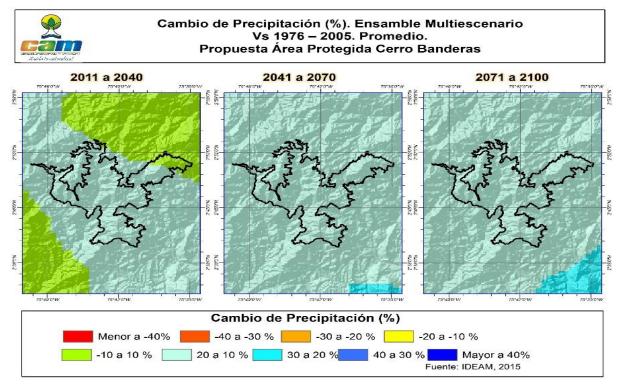
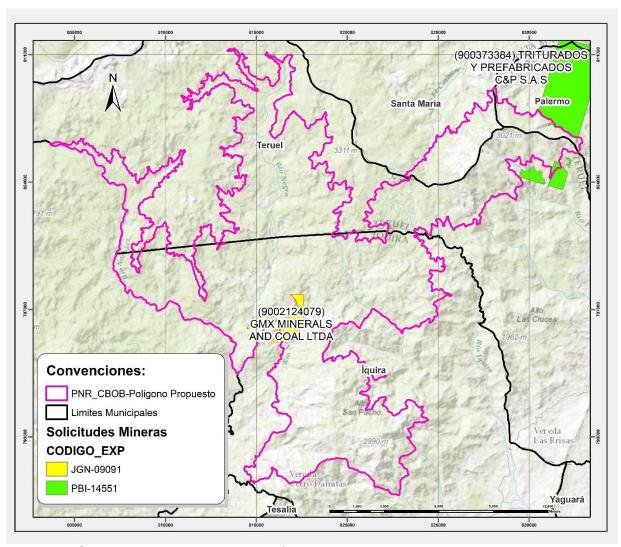


Figura 47. Cambios esperados en la precipitación para el polígono propuesto.

11 MINERÍA


Según comunicación emitida por la agencia nacional de minería (ANM), mediante oficio No. 20182200309581 del 5 de septiembre de 2018, el área trazada ya no se superpone con títulos mineros vigentes.

Dentro del polígono existen dos (2) solicitudes mineras vigentes en curso (Figura 48), con una extensión aproximada de 826 hectáreas, en modalidad de Contrato de concesión, distribuidas así:

- GMX MINERALS AND COAL LTDA (minerales de hierro, cobre, níquel, oro y sus concentrados) en modalidad de contrato de concesión, con una participación de 251 ha dentro del área.
- TRITURADOS Y PREFABRICADOS C&P S.A.S (materiales de construcción, minerales de cobre, minerales de metales preciosos, minerales de oro y sus concentrados con una participación aproximada de 575 ha dentro del área.

Figura 48. Solicitudes mineras en el polígono propuesto. Elaborado por Consorcio PNR 2018, basado en información de la CAM.

12 HIDROCARBUROS

La actividad petrolera ejerce una fuerte presión sobre el área, poniendo en riesgo la biodiversidad, el agua y la conservación de los ecosistemas estratégicos. Según comunicación de la agencia nacional de hidrocarburos (ANH), mediante oficio No. 20184310271841 del 10 de septiembre de 2018, dentro del polígono propuesto se encuentra un (1) convenio de exploración y explotación en ejecución, otorgados a Ecopetrol S.A, con 508 ha dentro del polígono propuesto (Figura 49). El convenio en exploración UPAR de la empresa Ecopetrol S.A, suscrito en el año 2011 (anteriormente suscrito en el 2004), se encuentra en la fase 3 del programa exploratorio, en el cual ha ejecutado 80 km² de sísmica 3D y está pendiente la perforación de un pozo exploratorio.

El convenio cuenta con licencia ambiental, la cual no abarca la zona traslapada. Según la ANH entre sus compromisos esta lo relacionado con los contratos de hidrocarburos, el permiso de exploración otorgado a TELPICO LCC, al haber finalizado los compromisos exploratorios iniciales y constituirse en parte de su extensión un área disponible, ha sido recortada en la intersección con Cerro Banderas - Ojo Blanco.

La ANH cumple la función de diseñar, promover, negociar, celebrar y administrar los contratos y convenios de exploración y explotación de hidrocarburos; menciona que los contratos de hidrocarburos, tienen estipulado una cláusula destinada a que "los contratistas acaten las restricciones ambientales impuestas a la porción del área contratada, cláusula que no establece ninguna diferenciación respecto de aquellas restricciones que encuentran definidas al momento en que se suscribe el contrato con las que podrán resultar sobrevinientes al desarrollo de las operaciones".

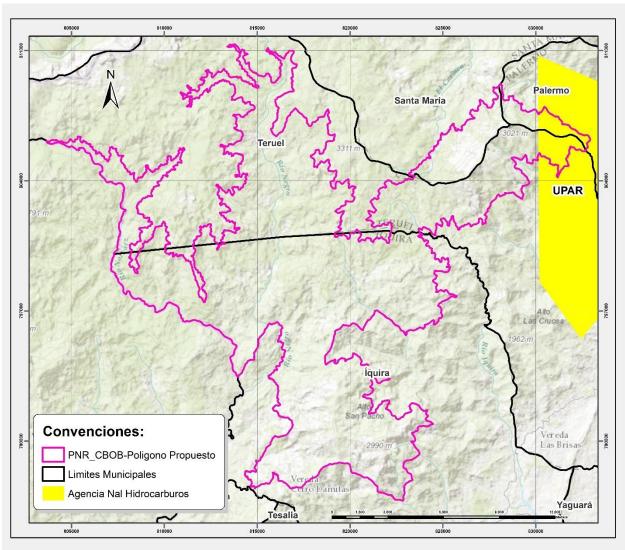


Figura 49. Actividad de hidrocarburos en el polígono propuesto. Elaborado por Consorcio PNR 2018, basado en información de la CAM.

13 CULTIVOS DE USO ILÍCITO

La Oficina de las Naciones Unidas Contra la Droga y el Delito (UNODC) en Colombia dio a conocer que en el polígono propuesto para Cerro Banderas — Ojo Blanco no se presentó cultivos de coca durante los periodos del 2001 al 2017, según oficio con fecha de septiembre 17 de 2018.

14 OBJETIVOS DE CONSERVACIÓN

A continuación, se presenta los objetivos de conservación, basados en los objetivos de conservación vigentes según el acuerdo 013 de 2011 (CAM, 2011) y teniendo en cuenta un objetivo de conservación acorde a un nuevo uso, según la recategorización del polígono propuesto.

14.1 OBJETIVO DE CONSERVACIÓN 1

Garantizar la condición natural de áreas representativas de ecosistemas de páramo, orobioma de selva andina y orobioma de selva subandina, necesarios para la conservación de la biodiversidad asociada, especialmente especies endémicas, amenazadas, migratorias y sombrilla como Anthocephala floriceps, Atlapetes flaviceps, Dacnis hartlaubi, Grallaria alleni, Grallaria rufocinerea, Hapalopsittaca amazonina, Hypopyrrhus pyrohypogaster, Leptosittaca branickii, Leptotila conoveri, Ognorhynchus icterotis, Tinamus osgoodi, Spizaetus isidori, Aotus cf. Griseimembra, Dinomys branickii, Lagothrix lagotricha lugens, Leopardus tigrinus, Mustela felipei, Atelopus simulatus, Osornophryne percrassa, Pristimantis hernandezi, Rhinella nicefori, Odontoglossum weirii, Tremarctos ornatus, Tapirus pinchaque y Puma concolor, manteniendo corredores de conectividad.

14.2 OBJETIVO DE CONSERVACIÓN 2

Mantener y recuperar las coberturas vegetales necesarias para la regulación del régimen hidrológico y desarrollar las medidas para la conservación de la calidad del agua de las microcuencas que abastecen acueductos y distritos de riego de los municipios de Íquira, Teruel, Palermo, Santa maría, Yaguará; así como contribuir a la conservación de la estructura ecológica principal de las subcuencas hidrográficas del Río Páez, del Río Yaguará y del Río Bache, de importancia estratégica para el departamento.

14.3 OBJETIVO DE CONSERVACIÓN 3

Proveer espacios naturales o aquellos en proceso de restablecimiento de su estado natural para el deleite, la recreación, la educación e interpretación ambiental y la investigación, en el área.

14.4 OBJETIVO DE CONSERVACIÓN 4

Conservar y usar sosteniblemente los recursos naturales para el desarrollo de actividades agropecuarias, en coherencia con las condiciones sociales, económicas y culturales de sus pobladores, así como con la importancia ambiental estratégica del área.

15 JUSTIFICACIÓN

15.1 ECOSISTEMAS Y BIODIVERSIDAD (REPRESENTATIVIDAD, IRREMPLAZABILIDAD Y COMPLEMENTARIEDAD)

El polígono propuesto está conformado por ecosistemas naturales y seminaturales en un 85,98% (18.978,4 ha). El 14,02% restante (3.095,4 ha) corresponde a ecosistemas transformados (agroecosistemas con actividades agrícolas y pecuarias). Dado el carácter protector de los PNR, es necesario realizar un análisis para proponer estrategias de manejo para una integridad ecológica, y revisar la categoría de manejo acorde.

La constante presión de los ecosistemas causada por la ampliación de la frontera agropecuaria, que incluso llega a los páramos, afecta los servicios ecosistémicos en el área, Estas presiones han conllevado a un proceso importante de pérdida y fragmentación de hábitats, los bosques naturales del departamento hoy abarcan apenas el 30% del territorio, de los cuales el 38% es catalogado como bosques fragmentados.

Los resultados obtenidos del análisis muestran como insuficiente el Bosque Húmedo Subandino (Tabla 56); por esta razón al encontrarse dentro del polígono permite mantener esta unidad en cumplimiento de las metas nacionales de conservación. Esta unidad biogeográfica se encuentra insuficientemente representado en el Sistema Nacional de Áreas Protegidas - SINAP (Figura 50).

Tabla 56. Representatividad del polígono propuesto por unidad biogeográfica en relación con el SINAP

Bioma	Representatividad	Área (ha)	%
Bosque Húmedo Alto Andino	Sin Vacío	17.816,7	80,7%
Bosque Húmedo Subandino	Alta Insuficiencia	437,0	2,0%
Transformado	Transformado	3.820,1	17,3%
TOTAL GENERAL		22.073,8	100%

Una red de áreas para la conservación idealmente debe asegurar la *persistencia* a través del tiempo y la evolución de todos los elementos que contiene; para lo cual se deben establecer metas de conservación en términos del porcentaje de cobertura natural mínima o tamaño poblacional lo suficientemente grande que garantice su conservación a través del tiempo (Wilson & Roberts, 2009). Igualmente se debe buscar *complementariedad* que es la medida del grado en que un área contribuye con características que permiten lograr el ideal de *representatividad* de un ecosistema dentro de un sistema de áreas protegidas existente, como se deben considerar las diferentes variables en el Sistema Departamental de Áreas Protegidas del Huila.

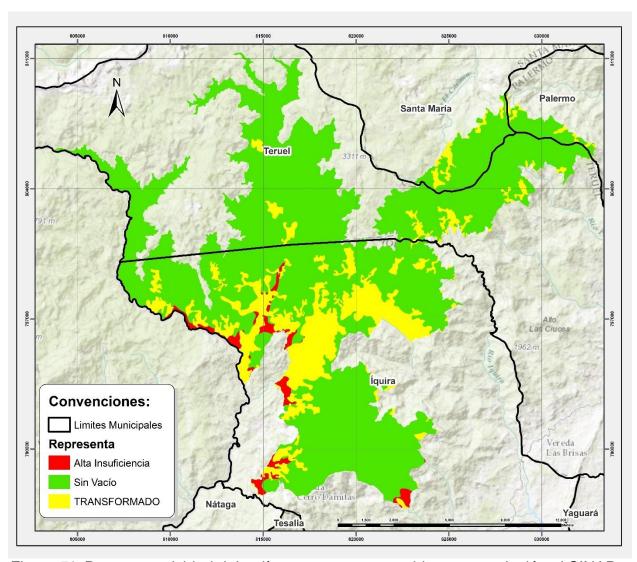


Figura 50. Representatividad del polígono propuesto por biomas en relación al SINAP

El ideal de representatividad ecosistémica que se tomará para efectos de este estudio es el definido por el Convenio de Diversidad Biológica –CDB- en el objetivo estratégico de las Metas de Aichi para la biodiversidad. La meta 11 de Aichi es: "Para 2020, al menos el 17% de las zonas terrestres y de aguas continentales y el 10% de las zonas marinas y costeras, especialmente aquellas de particular importancia para la diversidad biológica y los servicios de los ecosistemas, se conservan por medio de sistemas de áreas protegidas administrados de manera eficaz y equitativa, ecológicamente representativos y bien conectados y otras medidas de conservación eficaces basadas en áreas, y están integradas en los paisajes terrestres y marinos más amplios".

El análisis de representatividad de ecosistemas naturales y seminaturales presentes en el polígono propuesto con relación al conjunto de áreas protegidas que integran el SIDAP Huila, se encontró que el ecosistema Bosque subandino húmedo en Orobioma Subandino de la Cordillera Oriental, se encuentra subrepresentado a escala Departamental y no se encuentran representados dentro de los parques nacionales del departamento.

15.2 CONECTIVIDAD ECOSISTÉMICA Y REGIONAL

A continuación, se presenta información relacionada al "estudio y diseño de instrumentos de política para el manejo y administración de las áreas protegidas de carácter regional del departamento del Huila", el cual mostró el análisis de conectividad de áreas protegidas entre ellas Cerro Banderas Ojo Blanco (Gobernación de Huila, 2016).

Este estudio realizado para Cerro Banderas Ojo Blanco mostró que entre el 2002 y el 2009, se perdió el 10% de sus bosques, sufrió fragmentación en el 1,7% de los mismos y perdió 26,51% de vegetación secundaria. Alrededor del área la pérdida de bosques fue del 5% y de vegetación secundaria del 32,5% (Gobernación de Huila, 2016). El

área de estudio de Cerro Banderas Ojo Blanco presentó índices de conectividad media, lo que evidencia la importancia de asegurar el mantenimiento de las coberturas nativas todavía existentes y la restauración de las transformadas (Tabla 57).

Tabla 57. Índices de conectividad del paisaje del área de estudio de Cerro Banderas Ojo Blanco

Índice de conectividad	СВОВ
NL	172
NC	16
Н	1025,808
LCP	0,203
IIC	0,131
F	229,3074
PC	0,201

NL – Número de conexiones, NC – Número de componentes, H – Índice de Harary, CCP-Probabilidad de coincidencia de clase, LCP- Probabilidad de coincidencia de paisaje, IIC- Índice integral de conectividad, F – Flujo, AWF – Flujo ponderado por área, PC – Probabilidad de conectividad. FUENTE: (Gobernación de Huila, 2016, pág. 141).

Desde el punto de vista de los Biomas, el polígono propuesto para CBOB corresponde fundamentalmente a Bosque Alto Andino, que contribuye a la conectividad de Biomas de Páramo con bosques húmedo subandino, tipo de bosque que es importante para la regulación hídrica, alta pluviosidad y contribución para el control del calentamiento regional (Figura 51).

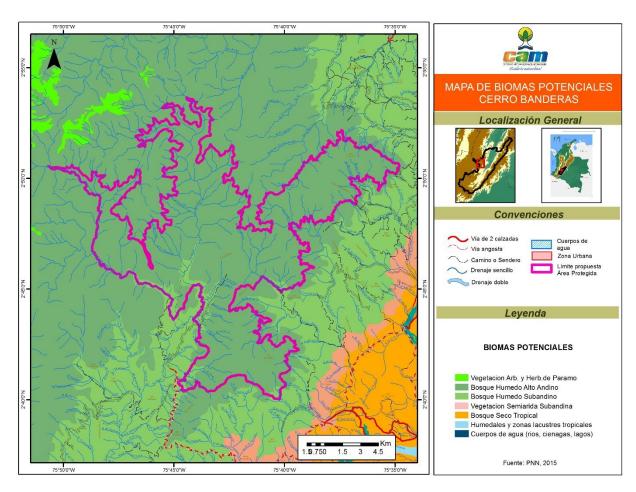


Figura 51. Biomas potenciales en el polígono propuesto para CBOB

15.2.1 Análisis de conectividad con otras áreas de conservación o corredores ecológicos

El departamento tiene una extensión de 662.574 hectáreas de ecosistemas estratégicos, destacándose tres corredores de conservación como son el corredor del Macizo Colombiano, corredor del valle alto del río Magdalena y corredor Trasandino Amazónico, en donde se ubican áreas protegidas como los cinco parques nacionales, y los parques naturales regionales como Cerro Banderas - Ojo Blanco (PNUD, 2010).

La zona de estudio tiene un proceso de deterioro por el uso inadecuado del suelo y a las prácticas agropecuarias con factores de alta insostenibilidad, la fuerte presión sobre

los ecosistemas naturales, contaminación por pesticidas, quemas y construcciones rurales. Estas actividades conllevan erosión del suelo, sedimentación y contaminación de las aguas, afectando la flora, fauna y la calidad de vida de la población. Adicionalmente, el cambio climático sin duda alguna ha venido afectando el equilibrio hidrológico de las microcuencas y cuencas hidrográficas.

Se considera como ecosistema estratégico las áreas que garantizan la oferta de servicios ecosistémicos del territorio para generar un proceso de desarrollo sostenible, económico y social, garantizando el sustento de la diversidad cultural y biológica. El polígono propuesto conserva invaluables áreas que tienen recursos naturales se convierten en reguladoras de las condiciones climáticas y que garantizan la producción hídrica.

Páramos

De acuerdo a la información suministrada por el Instituto de Recursos Biológicos Alexander Von Humboldt existe un páramo en el área, con extensión 1.626 ha del complejo Nevado del Huila – Moras, de las cuales 981 ha se ubican en el municipio de Íquira, 128 ha en el municipio de Teruel y 517 ha entre los municipios de Teruel, Santa María y Palermo (*Figura 52*). Este ecosistema es de especial importancia para su conservación.

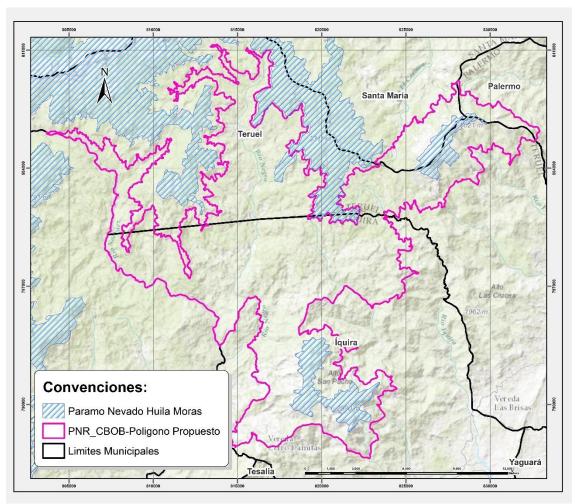


Figura 52. Ecosistema de Páramo en la zona. Basado en información de la CAM y del IAVH.

Parque Nacional Natural Nevado del Huila

Se localiza en los Departamentos de Cauca, Tolima y Huila (Figura 53); con una extensión de 158.000 hectáreas, de las cuales 33.595,4 ha hacen parte del departamento del Huila en los municipios de Teruel, Íquira y Santamaría. Se encuentra en un rango altitudinal entre los 1000 a los 5350 msnm con pisos térmicos que varían de frío muy húmedo, frío muy pluvial, subnival superhúmedo hasta nival; representando los ecosistemas de páramo, subpáramo, bosque andino y altoandino (Parques Naturales Nacionales, 2005).

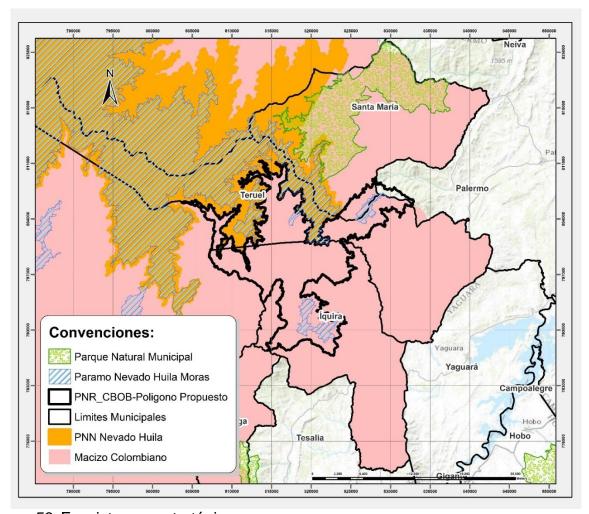


Figura 53. Ecosistemas estratégicos. Elaborado por Consorcio PNR 2018, basado en información de la CAM

Se encuentra ubicado dentro de la zona declarada por la UNESCO como reserva de la Biósfera, esta posee el mayor relicto glaciar que existe en la cordillera central. Abastece las dos cuencas que son más importantes del país: la del Río Magdalena y la del Río Cauca, aportando bienes y servicios ambientales como equilibrar el clima regional para el sur del Tolima, Huila y Cauca, pues permite la conservación de bosques, y es un sitio AICAS, por su riqueza de aves (Instituto Humboldt – CORTOLIMA, 2015).

La importancia de esta zona está relacionada con la función principal de preservar las especies nativas de flora y fauna y de mantener la oferta de hídrica, como es el Río

Íquira, Río Negro y la Quebrada Zaragoza, afluentes del Río Negro de Narváez, la hidroeléctrica de Betania y los acueductos veredales y municipales de la zona.

Es estratégico también por la presencia de coberturas boscosas naturales de ecosistemas altoandinos que son de baja representatividad en el país, al tener una fuerte presión antrópica. El beneficio de su protección deriva en su gran riqueza o diversidad biológica, fauna, flora, valores o relictos paleontológicos, humedales naturales, que sirven de refugio a diferentes especies faunísticas como aves migratorias o nativas.

El Macizo Colombiano

Por encontrarse dentro de su área de influencia, el área hace parte de este ecosistema donde tienen origen la cordillera central y la cordillera oriental. Es uno de los ecosistemas de Colombia con mayor riqueza paisajística, cultural y biológica, al ser una de las áreas más grandes de páramos, contiene riqueza en términos de agua, flora y fauna; donde coexisten los ecosistemas Andino, Pacífico y Amazónico.

El Macizo Colombiano se conoce como la estrella fluvial colombiana, al tener el origen de los ríos Magdalena, Cauca, Patía y Caquetá y varios de sus afluentes. Posee una extensión total de 3.268.237 ha. El ecosistema es un complejo hidrológico con 65 cuerpos lagunares, 13 páramos y tiene el 10% de la flora nacional. El ecosistema cumple funciones en la regulación climática del país; fue declarado por la UNESCO como reserva de la biosfera a nivel mundial, al albergar un valioso patrimonio histórico, étnico, cultural y biológico (Corporación Autónoma Regional del Alto Magdalena, 2005).

Parque Natural Municipal de Santa María.

El Parque Natural Municipal de Santa María (*Figura 53*), se localiza en el municipio de Santa María del departamento del Huila y tiene una extensión de 12.202 hectáreas (RUNAP, 2018).

15.3 ESTADO DE CONSERVACIÓN

15.3.1 Análisis de contraste

Con relación al análisis de estado de conservación, realizado con la capa de coberturas de 2018, se presenta la Tabla 58 con el análisis de contraste del polígono propuesto.

Tabla 58. Análisis de contraste del polígono propuesto para CBOB en el año 2018.

Tabla 58. Analisis de contraste del poligono propuesto para CBOB en el ano 2018.							
ATRIBUTOS DE LA BIODIVERSIDAD	Indicadores	Valor obtenido para el área protegida	Valor porcentual área protegida	Rango establecido para la categoría	Cumple indicador	Cumple atributo ecológico	
Composición	Número de unidades espaciales naturales	12	12	> 1	SI	SI	
Estructura	3.Proporción de unidades espaciales naturales (porcentaje)	87,3	87%	>95	NO	NO	
	4.Tamaño del fragmento más grande de la unidad espacial natural	75,2	75%	>80	NO		
	5.Número de fragmentos de la unidad espacial natural	55	83%	>60	SI		
	7. área núcleos efectiva (ha)	11.028	62%	>80	NO		
Función	8.Conectividad entre fragmentos de las unidades espaciales naturales (m)	49,2	100%	>70%	SI	SI	
	9.Continuidad longitudinal de las unidades espaciales naturales	99,99	100,0%	>98	SI		
	10.Continuidad altitudinal entre unidades espaciales Naturales (m)	1.538	99%	>90%	SI		

Dada la condición de naturalidad del área, y según el análisis de contraste se observa que el polígono propuesto cumple con los atributos de biodiversidad por su composición y función, de los ecosistemas originales, pero no permanece el atributo estructura requerido para la categoría de manejo de PNR de acuerdo con lo establecido en el Decreto 2372 de 2010" (compilado en el Decreto 1076 de 2015). Esto indica la necesidad de homologación la categoría de PNR y el de realizar acciones de manejo que permitan la conservación del área.

15.3.2 Biodiversidad

Debido a la existencia de especies con algún grado de vulnerabilidad y especies endémicas en la zona, se necesita generar planes de manejo y conservación, teniendo en cuenta que la perdida de alguna es un proceso irreversible que acarrea la perdida de los diferentes papeles ecosistémicos que a su vez ejercen en el medio; debido a que se ha interrumpido la conectividad y flujos de energía, por la intervención antrópica.

Para el caso específico de polígono propuesto de Cerro Banderas – Ojo Blanco, se encontraron 307 especies de flora y 254 de fauna, de las cuales 35 especies se encuentran en grado de amenaza (30 de fauna y 5 de flora). De ellas (2) se encuentran catalogadas por la UICN como en peligro crítico (CR), (4) en peligro (EN), (24) vulnerables (VU). De ellas (2) son especies sombrilla y (18) son catalogadas como endémicas. En la Tabla 59, se presentan (24) especies priorizadas principalmente por el grado de amenaza de extinción y ser especies sombrilla (S), o ser consideradas endémicas (E).

Tabla 59. Priorización de especies de fauna y flora amenazada, endémica o sombrilla.

		ĺ		Categoría		Е
Clase	Especie	Nombre común	Libro rojo	UICN	CITES	S
Aves	Atlapetes flaviceps	Atlapetes de anteojos	EN	EN		E
Aves	Leptotila conoveri	Caminera Tolimense		EN		CE
Aves	Ognorhynchus icterotis	Periquito orejiamarillo	EN	EN		CE
Aves	Grallaria alleni	Tororoi bigotudo	EN	VU		E
Aves	Hypopyrrhus pyrohypogaster	Chango colombiano	EN	VU		Е
Aves	Dacnis hartlaubi	Mielero turquesa	VU	VU		E
Aves	Grallaria rufocinerea	Cholongo	VU	VU		CE
Aves	Anthocephala floriceps	Colibrí cabecicastaño	VU	VU	ll l	CE
Aves	Hapalopsittaca amazonina	Cotorra montañera	VU	VU		CE
Aves	Tinamus osgoodi	Tinamú negro	EN	VU		CE
Aves	Leptosittaca branickii	Perico paramuno	VU	VU		ii
Aves	Spizaetus isidori	Águila crestada	EN	EN		
Mamíferos	Lagothrix lagotricha lugens	Mono Churuco	VU	CR	II	Е
Mamíferos	Aotus cf. griseimembra	Mono lechuza		VU		E
Mamíferos	Tapirus pinchaque	Danta de páramo	VU	EN		S
Mamíferos	Tremarctos ornatus	Oso de anteojos		VU		S
Mamíferos	Mustela felipei	Comadreja		VU		
Mamíferos	Leopardus tigrinus	Gato montes		VU		
Mamíferos	Dinomys branickii	Guagua loba	VU	VU		
Anfibios	Atelopus simulatus	Rana Arlequín		CR		E

			Categoría			E
Clase	Especie	Nombre común	Libro rojo	UICN	CITES	S
Anfibios	Rhinella nicefori	Sapo Picudo Colombiano		EN		Е
Anfibios	Pristimantis hernandezi	Rana ladrona de Hernández		EN		Е
Anfibios	Osornophryne percrassa	Sapito de Páramo		VU		E
Flora- Monocotiledónea	Odontoglossum weirii	Orquídea		VU	II	Е

CR-peligro crítico, EN-en peligro, VU-vulnerable, ii Información insuficiente, Apéndice I-Mayor grado de peligro (CITES), E- Endémicas, S-Sombrilla.

Elaboración propia basada en las categorías UICN, el Libro Rojo y los apéndices CITES.

La de mayor riesgo es *Lagothrix lagothricha lugens* (mono churuco) catalogado por la UICN en "peligro crítico de extinción", al ser preferida para la cacería por su tamaño, por su carne y por el comercio de mascotas. Es una especie adaptada a vivir en bosques primarios y su hábitat está muy fragmentado por la extensa tala de los bosques andinos (Pereira, Stevenson, Bueno, & Nassar, 2010). La desaparición de esta especie puede generar consecuencias ecológicas de la regeneración de plantas y el transporte de nutrientes, al producir impacto en la dispersión de semillas.

Otra especie catalogada por la UICN en "peligro crítico de extinción" es *Atelopus simulatus* (Rana Arlequín), debido principalmente, al cambio climático, a la disminución o degradación del hábitat y a la contaminación de esta especie con patógenos como el hongo *Batrachochytrium dendrobatidis*, factores que podrían estar actuando conjuntamente (Armesto & Señaris, 2017).

Se debe conservar especies como el Oso de Anteojos (*Tremarctos ornatus*) y la Danta de Páramo (*Tapirus pinchaque*), ya que estas dos especies son necesarias para mantener las dinámicas de los ecosistemas en los que se encuentran, ecosistemas considerados importantes en el trópico por formar parte del "Centro de Diversidad Andino", catalogada como la región más diversa del planeta (Mast, Fule, Moore, Covington, & Waltz, 1999). Adicionalmente son consideradas como especie sombrilla, que son las especies seleccionadas para tomar decisiones relacionadas con la conservación, porque protegiendo estas especies, se protegen de forma indirecta muchas otras especies que componen la comunidad de su hábitat, al requerir grandes extensiones de terreno para el mantenimiento de poblaciones mínimas viables.

Hay que proteger y conservar los diferentes ecosistemas terrestres, ya que en ellos se alberga una gran diversidad de especies, además de que se efectúa una interacción constante entre los diferentes organismos vivos y el medio físico, es decir, todas aquellas alteraciones ocasionadas por las transformaciones o perdida de estos ecosistemas desencadenan una serie de sucesos que si no son controlados pueden afectar a la diversidad, es por esto que es necesario incentivar más corredores biológicos entre parches de bosques ya que esto le confiere una mayor capacidad de recuperación, reduciendo el impacto de los cambios generados.

Se debe reconocer y proteger aquellas especies endémicas de Colombia que actualmente se encuentran en categoría de riesgo. Debido a que son especies únicas que no se encuentran en ningún otro lugar del mundo, por lo tanto, su importancia ecológica deriva en que al estar estrechamente relacionados con los ecosistemas su extinción afectaría el equilibrio del ecosistema y a las especies que interactúan con ellas.

Todo esto se complementa con la implementación de diferentes estrategias orientadas a incentivar a la comunidad sobre el cuidado y preservación del medio y de las especies.

15.4 SERVICIOS ECOSISTEMICOS

15.4.1 Presencia de áreas de recarga hídrica

El polígono propuesto, cuenta con una importante reserva hídrica y sitios de nacimiento de cuerpos de agua que son utilizados en riego en los sistemas agropecuarios y para consumo humano en numerosos acueductos rurales y urbanos.

A continuación, se describen los acueductos rurales, regionales y urbanos (Tabla 60), que son abastecidos en el polígono propuesto, basados en información suministrada

por aguas del Huila, reconociendo los acueductos y las fuentes abastecedoras que nacen dentro del área protegida. El análisis muestra que existen 27 acueductos veredales y 5 urbanos que benefician directamente a 5.759 familias, relacionadas por la producción hídrica del área para consumo humano, evidenciando la importancia directa en este aspecto.

Tabla 60. Principales acueductos beneficiados del polígono propuesto.

	Municipio Vereda Acueducto Fuente Viviendas								
Municipio		Acueducto	Fuente						
Palermo	La Florida	Acueducto Rural La Florida	El Viso	62					
Palermo	Brisas del Nilo	Acueducto Rural Brisas Del Nilo	Helena	37					
Palermo	Horizonte	Acueducto Rural Horizonte	Hueco Seco	42					
Palermo	El Viso	Acueducto Rural El Viso	Playa Rica	32					
Palermo	Los Pinos	Acueducto Rural Los Pinos	Q. El Oso	24					
Palermo	Nilo	Acueducto Rural Nilo San Antonio	Q. Nilo	149					
Palermo	Nilo	Acueducto Rural Nilo	Pan de Azúcar	149					
Palermo	San Gerardo	Acueducto Rural San Gerardo	El Pedernal	51					
Palermo	El Pijao	Acueducto Rural El Pijao	La Estrella	48					
Palermo	El Dorado	Acueducto Rural El Carmen	El Carmen	7					
Palermo	Las Juntas	Acueducto Rural Las Juntas	La Cristalina	15					
Teruel	Castilla, Sinaí, Yarumal	Acueducto Regional Sinaí	Q. El Cedral	38					
Teruel	Paraíso, Rio Íquira	Acueducto Regional Rio Íquira	Rio Íquira	31					
Santa María	Buena Vista	Acueducto Rural Buenavista	Yarumal	28					
Santa María	Buena Vista, La Esperanza, Mercedes	Acueducto Regional Q. Yarumal	Yarumal	148					
Íquira	Rio Negro Centro Poblado	Acueducto Rural Rio negro	El Pato	300					
Íquira	San Francisco, San Isidro	Acueducto Regional San Francisco- San Isidro	Nacimiento finca Las Mercedes	143					
Íquira	San Francisco	Acueducto Rural San Francisco Medio	Nacimiento Finca Mirador	89					
Íquira	San Francisco	Acueducto Rural Sanfrancisco Bajo	Q. Chorro Alto	89					
Íquira	Ibirco	Acueducto Rural Ibirco	Q. Ibirco	65					
Íquira	Santa Bárbara	Acueducto Rural Santa Bárbara	Q. Ibirco	40					
Íquira	Juancho, Villa María	Acueducto Regional Villa María	Salento	130					
Íquira	La Copa, Los Andes	Acueducto Regional La Copalos Andes	Q. El Carmen	113					
Tesalia	El Guamal	Acueducto Rural El Guamal	Juancho	30					
Nataga	El Diamante	Acueducto Rural El Diamante	La Cristalina	53					
Nataga	La Cascajosa	Acueducto Rural La Cascajosa	Las Lajas	45					
Nataga	La Cascajosa	Acueducto Rural La Cascajosa	Las Lajas	45					
Yaguará	El Mirador, Flandes	Acueducto Urbano Yaguará (Flandes)	El Pedernal, Hato Viejo	78					

Municipio	Vereda	Acueducto	Fuente	Viviendas
Yaguará	Flandes	Acueducto Urbano De Yaguará (Flandes)	Rio Pedernal, Hato Viejo, Jordán	28
Íquira	Urbano	Acueducto municipal de Íquira	Q. Ibirco	598
Yaguará	Urbano	Acueducto municipal de Yaguará	Q. San Francisco:	1945
Teruel	Urbano	Acueducto municipal de Teruel	El río Pedernal	1107
TOTAL				5.759

Fuente: Elaborado con información de Aguas del Huila.

La red hídrica es importante en la provisión del recurso hídrico para el consumo humano, presentándose el análisis del estado actual de las cuencas abastecedoras de los acueductos municipales y sus bocatomas, donde se refleja el servicio abastecido directamente para los acueductos municipales de Íquira, Teruel y Yaguará (Figura 54).

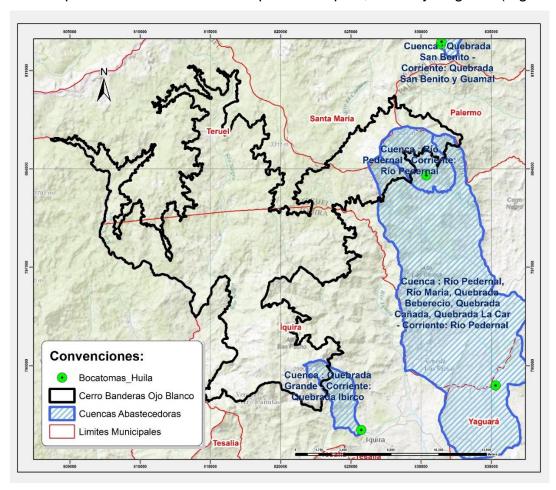


Figura 54. Cuencas abastecedoras y bocatomas municipales del polígono propuesto.

También se realizó el análisis de los distritos de riego cuyas fuentes abastecedoras nacen en el área protegida, utilizados en riego en los sistemas agropecuarios, encontrándose tres distritos de riego, que benefician a 94 familias (Tabla 61):

Tabla 61. Distritos de riego dependientes del polígono propuesto

Municipio	Vereda	Nombre asociación	Fuente	Familias beneficiarias
Teruel	Almorzadero	Asoalmorzadero	Quebrada La María	35
Íquira	Santa Bárbara	Asosanta Bárbara	Quebrada Ibirco	17
Yaguará	Santana	Asosantana	Río Pedernal	42
TOTAL				94

Fuente: Elaborado con información de la Agencia de Desarrollo Rural - ADR UTT11.

Hay que indicar que según el estudio nacional del agua (Instituto de hidrología, meteorología y estudios ambientales - IDEAM, 2018), existen vulnerabilidad en 391 fuentes hídricas que abastecen cabeceras municipales de Colombia, limitado por el déficit en la oferta natural, por la reducción de la precipitación o por la insuficiencia en la infraestructura de abastecimiento, denotando el grado de fragilidad de la cuenca hidrográfica. En el departamento de Huila se priorizan 7 municipios susceptibles al debastecimiento de agua entre los cuales están municipios de impacto de este polígono propuesto como los son Nátaga, Tesalia e Íquira, que no estaban en la lista del anterior estudio (IDEAM, 2014).

15.4.2 Cobertura vegetal frente a fenómenos como erosión y remoción de masa

Según la FAO, el 46% del departamento del Huila tiene conflicto alto por el uso del suelo, relacionado principalmente a la transformación y/o intervención de los ecosistemas naturales. "Cada año se utilizan 81.782 m³ de madera en el Huila, que corresponde a 58,8 millones de postes y/o varas; además se demandan 1.782.000 cajas para embalaje de tomate y otros productos. Se podría estimar que corresponde a un área intervenida de bosque natural aproximada de 1.363 ha, si consideramos que en promedio se estima 60 m³/ha" (Contraloría Departamental del Huila, 2008).

Una parte del polígono propuesto ha entrado en conflictos del uso del suelo pese a la poca aptitud productiva, principalmente para el establecimiento de sistemas de producción de bovinos y agrícolas, afectando la conectividad con las áreas naturales, como el uso excede los potenciales de la tierra se estaría provocando una sobreutilización del suelo. Sin embargo, la mayoría del área está con coberturas naturales en buen estado de conservación, principalmente en bosque natural que brinda la conservación de fauna, flora y agua principalmente. Muchas de estas áreas tienen el potencial para el desarrollo de la investigación científica y para el ecoturismo.

Según el IDEAM (*Figura 55*), en el polígono propuesto existen 106 ha con vocación para conservación de recursos hidrobiológicos, 1.723 ha con vocación para protección forestal, y 20.245 ha con vocación para protección y producción; lo que indica la aptitud que tiene los suelos para protección con área forestal, y la poca aptitud para la producción agropecuaria.

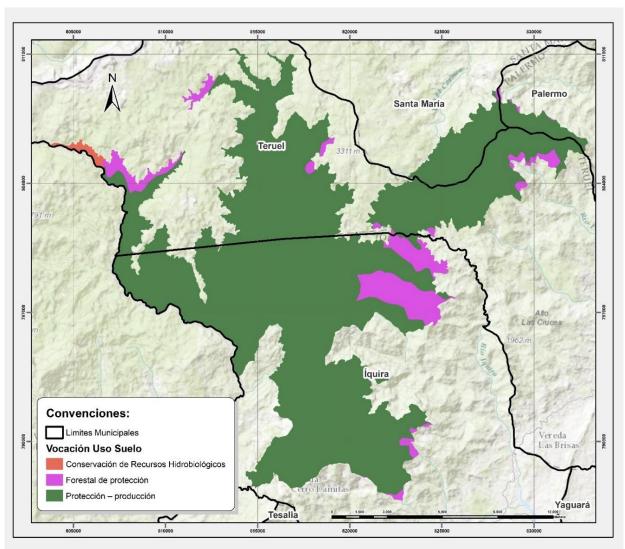


Figura 55. Vocación del uso de suelo en el polígono propuesto. Elaborado por el Consorcio PNR 2018, basado en información de la CAM.

Según la CAM (2015), el uso del suelo (Figura 56) en los predios caracterizados (6.416 ha) está representado en bosques naturales con el 39%, seguido de rastrojos con el 28%, pastos o forrajes con el 19% y cultivos permanentes y transitorios con el 9%.

En la Tabla 62, está consignado el uso de los suelos distribuidos por municipios, lo que indica la alta intervención de la zona, principalmente en el municipio de Íquira.

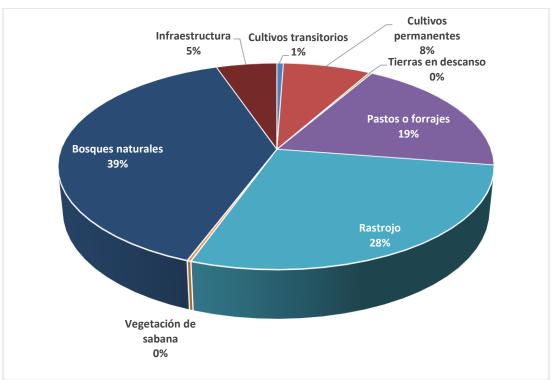


Tabla 62. Distribución del uso del suelo por municipio dentro del polígono propuesto (ha)

MUNICIPIO	Cultivos transitorios	Cultivos permanen	Tierras en descanso	Pastos o forrajes	Rastrojo	Vegetació sabana	Bosques naturales	Infraestruct
Íquira	36	353	10	945	1.747	16	2.220	335,3
Palermo	0	62	1	139	8	0	28	0,4
Santa María	0	4	3	62	15	0	50	0,1
Teruel	0	68	1	78	27	0	207	1,0
TOTAL	36	486	15	1.224	1.797	16	2.505	337

Fuente: CAM, 2015.

Figura 56. Uso del suelo dentro del área protegida. Fuente: Caracterización socioeconómica de la CAM (2015).

El vínculo económico más importante es el agropecuario, al generar uno de los más grandes movimientos para la economía. Según los datos de la caracterización socioeconómica realizada por la CAM en 6.416 ha, en los cuales la producción agrícola, ocupa 665 ha con cultivos, detallados en la Tabla 63.

Tabla 63. Área de producción agrícola por municipio dentro del polígono propuesto (ha)

Municipio	Café	Cultivos perennes	Cultivos Semipermanentes	Cultivos anuales
Íquira	150	46	194	142
Teruel	48	12	2	0
Palermo	4	0	0	0
Santa María	56	9	3	1
TOTAL	258	67	198	143

Fuente: CAM, 2015.

El principal cultivo para la zona es el café; seguido de cultivos semipermanentes como granadilla y caña; cultivos permanentes como plátano y aguacate y otros como el frijol.

Con relación a la producción pecuaria que predomina es ganado bovino de doble propósito. Esto se complementa con la cría de otras especies menores, tales como aves, apicultura, cabras, ovejas, peces, entre otras; que normalmente son para la seguridad alimentaria. Existen en el área protegida 1.224 ha de pastos y forrajes (19% del área), con una carga de 1.286 cabezas de ganado pecuario (Tabla 64).

Tabla 64. Inventario pecuario por municipio dentro del polígono propuesto

MUNICIPIO	Bovino	Caballar	Mular	Asnal	Ovino	Cerdos
Íquira	843,0	86	129	13	1	24
Palermo	57,0	14	9	3	0	0
Santa María	48,0	36	1	0	0	0
Teruel	15,0	7	0	0	0	0
TOTAL	963	143	139	16	1	24

Fuente: CAM, 2015.

• Áreas expuestas a amenazas y riesgos

En los diferentes esquemas de ordenamiento territorial, se mencionan las áreas expuestas a amenazas y riesgos. En los 4 municipios se encuentran zonas con amenaza alta y media por movimientos en masa, avalanchas, inundaciones y procesos erosivos, debido entre otros a que la topografía es accidentada, con grandes drenajes.

Para el municipio de Teruel, en la cuenca del Río Pedernal, en su parte alta, la principal amenaza tiene que ver con los movimientos en masa. Se evidencian procesos de erosión fluvial que debilitan las terrazas, generando desplomes que arrasarían con las viviendas construidas muy cerca al cauce del río (Alcaldía de Teruel, 2016).

Para el municipio de Íquira se identifican áreas expuestas a amenazas y riesgos de ocurrencia de desastres de eventos como avalanchas, derrumbes, inundaciones o deslizamientos en terrenos distribuidos en las veredas Quebradón, El Rosario, e Ibirco, de las ubicadas en jurisdicción de Cerro Banderas (Municipio de Íquira, 2015). Hace tres años se presentó una avalancha en la cuenca de la quebrada Nazareth.

Para el municipio de Palermo se identifican amenazas en las veredas con jurisdicción del área protegida, por remoción de masas en las veredas Brisas de Nilo, Florida y Pinos; amenaza por Deslizamientos en las veredas Brisas del Nilo, Horizonte y Pinos; amenaza por avalanchas en la vereda Los Pinos; amenaza por inundaciones en los valles de los ríos Bache y la quebrada Nilo (Municipio de Palermo, 2016).

15.4.3 Presencia de sitios con especial valor escénico o paisajístico, relictos arqueológicos y otros sitios de valor histórico o cultural

• SITIOS DE VALOR ARQUEOLOGICO

El ICANH (Instituto Colombiano de Arqueología e Historia) revela que dentro del área objeto de Cerro Banderas Ojo Blanco no se han reportado sitios arqueológicos ni áreas arqueológicas protegidas ante el instituto, según oficio con número de radicado 4483 del 26 de noviembre de 2018.

CERRO BANDERAS

Se localiza al sur del área y se encuentra en jurisdicción del municipio de Íquira, en cercanías al límite con el departamento del Cauca. Comprende considerables

coberturas de bosque natural en buen estado de conservación y constituye a su vez una importante estrella hidrográfica para los acueductos veredales.

• CERRO PAN DE AZÚCAR

Está ubicado sobre la ruta hacia el Volcán Nevado del Huila, Entre los municipios de Teruel, Santa María y Palermo, se encuentra este sistema ubicado desde los 2.400 m.s.n.m. en la vereda La Armenia del municipio de Teruel, hasta el Cerro Alta Gracia entre los 3 municipios a 3.200 m.s.n.m. Tiene una extensión de 40 hectáreas aproximadamente y contiene rasgos representativos de los ecosistemas de bosque altoandino. Es un área que se encuentra afectada por la intervención antrópica y paulatinamente se ha venido convirtiendo en una isla, pues a su alrededor cada vez hay menos bosque y más cultivos y potreros destinados para actividades ganaderas.

En este sistema nacen las fuentes hídricas: quebradas El Salto, San Isidro, El Cedro, El Rincón y El Nilo (Microcuenca del Río Tune - Palermo); las quebradas La Vega y El Carmen de Bolívar (Subcuenca del Río Baché - Santa María); las quebradas El Horiz, Las Nubes, La Laguna (Microcuenca del Río Pedernal - Teruel), la quebrada La Armenia (Microcuenca de Río Íquira - Teruel) (Alcaldía de Teruel, 2000).

CERRO OJO BLANCO

Se encuentra localizado al norte del área en jurisdicción de los municipios de Santa María y Palermo, para los cuales surte una gran cantidad de acueductos veredales por la importante disponibilidad de recursos hídricos que oferta.

16 DELIMITACION

En la Tabla 65 se presentan los límites y las coordenadas del polígono propuesto para Cerro Banderas – Ojo Blanco (Figura 57).

Tabla 65. Límites y coordenadas del polígono propuesto

	Tabla 65. Límites y coordenadas del polígono propuesto					
TRAMO	X	Υ	Descripción			
1	803481	806237	En el municipio de Teruel, desde intersección entre PNN Nevado del Huila y rio Narváez descendiendo en sentido norte sur hasta			
2	806138	805064	desembocadura de fuente de agua sin identificar en el rio Narváez Continúa hacia el sur siguiendo el cauce del rio Narváez hasta			
3	807890	802443	desembocadura de fuente sin identificar que nace en el PNN Nevado del Huila			
4	807566	801649	Continúa hacia el sur siguiendo el cauce del rio Narváez hasta desembocadura de fuente sin identificar que nace en el PNN Nevado del Huila			
5	807616	801158	Continúa hacia el sur siguiendo el cauce del rio Narváez hasta desembocadura de fuente sin identificar que nace en el costado occidental en el departamento del Cauca			
6	807287	800053	Continúa hacia el sur hasta punto de intersección en límite entre los municipios de Teruel, Íquira en el departamento del Huila y el departamento del Cauca			
7	807394	798890	Avanza 1324 m hacia el sur por el cauce del rio Narváez hasta llegar a fuente hídrica de segundo orden sin identificar, la cual nace en el departamento del Cauca			
8	807785	798254	Avanza 764 m hacia el sur por el cauce del rio Narváez hasta llegar a fuente hídrica de segundo orden sin identificar, la cual nace en el departamento del Cauca			
9	808408	797653	Avanza 1242 m hacia el sur por el cauce del rio Narváez hasta llegar a fuente hídrica de primer orden sin identificar, la cual nace en el departamento del Cauca			
10	808948	797384	Avanza 706 m hacia el sur por el cauce del rio Narváez hasta llegar a fuente hídrica de primer orden sin identificar, la cual nace en el departamento del Cauca			
11	809503	797030	Avanza 1410 m hacia el sur por el cauce del rio Narváez hasta llegar a fuente hídrica de segundo orden sin identificar, la cual nace en el PNN Nevado del Huila			
12	810591	797318	Avanza 1393 m hacia el sur por el cauce del rio Narváez hasta llegar a fuente hídrica de primer orden sin identificar, la cual nace en el PNN Nevado del Huila			
13	810994	796466	Avanza 993 m hacia el sur por el cauce del rio Narváez hasta llegar a fuente hídrica de primer orden sin identificar, la cual nace en el departamento del Cauca			
14	811828	796450	Avanza 844 m hacia el sur por el cauce del rio Narváez hasta llegar a fuente hídrica de primer orden sin identificar, la cual nace en el departamento del Cauca			
15	813001	795911	Avanza 1350 m hacia el sur por el cauce del rio Narváez hasta llegar a fuente hídrica de primer orden sin identificar, la cual nace en la vereda los Alpes del municipio de Íquira			
16	813525	795495	Avanza 690 m hacia el sur por el cauce del rio Narváez hasta llegar a fuente hídrica de primer orden sin identificar, la cual nace en la vereda			

TRAMO	X	Y	Descripción
			los Alpes del municipio de Íquira
17	813890	795115	Avanza 547 m hacia el sur por el cauce del rio Narváez hasta llegar a fuente hídrica de primer orden sin identificar, la cual nace en la vereda los Alpes del municipio de Íquira
18	813962	793436	Avanza 1838 m hacia el sur por el cauce del rio Narváez hasta llegar a fuente hídrica de primer orden sin identificar, la cual nace en la vereda Santa Rosa del municipio de Íquira
19	815654	796315	Cruza la colina en dirección nororiente y desciende hasta llegar al lecho del rio Negro en la vereda Zaragoza en un tramo de 3574 m
20	815776	793628	Avanza por el cauce del rio Negro en 3962 m hasta encontrarse con la desembocadura de la quebrada el Carmen en límites entre las veredas la Copa, Santa Rosa y Zaragoza
21	814933	788946	Avanza en 7044 m sobre el lecho de la quebrada el Carmen hacia el sur, luego sigue por el cauce de la quebrada las lajas hasta su nacimiento, se aleja de fuentes hídricas descendiendo a través de otros terrenos hasta llegar a la unión de las quebradas El Pato y la Unión en la vereda Rio Negro del Municipio de Íquira
22	815051	787565	Continúa en 2768 m bordeando bosques, encuentra en su camino la quebrada mala noche y la cruza, hace un giro en sentido occidente oriente hasta llegar a curva nivel 2200 msnm
23	816789	787470	Avanza en sentido occidente oriente en 1303 m hasta llegar a la quebrada el oso, luego asciende por el cauce de esta en longitud de 1400 m
24	820661	788087	avanza hacia el oriente en distancia de 4827 m cerca al punto que une los límites de las veredas El Pato, El Tote y Villa María en el municipio de Íquira sobre el lecho de la quebrada el tote a la altura de 2160 msnm
25	822827	786791	Corta las curvas descendiendo en sentido suroriente en longitud de 2841 m hasta llegar a punto cercano a desembocadura de fuente hídrica en la quebrada de Juancho en límites entre las veredas Villa María y el Recreo del municipio de Íquira
26	823310	788102	Asciende en dirección nororiente en distancia de 1596 m hasta encontrar el cauce la quebrada El Cedro en la vereda Ibirco
27	823378	789877	Asciende en dirección nororiente en distancia de 2662 m hasta encontrar el cauce la quebrada grande en límites entre la vereda lbirco y el Pato
28	823757	790801	Asciende en dirección nororiente en distancia de 1393 m hasta encontrar el cauce de la quebrada el Jaho en la vereda El Jardín sobre la curva de 2.200 msnm
29	822472	791253	Se proyecta una curva en forma de u avanzando en sentido oriente, luego gira hacía el norte y luego hacia occidente bordeando cobertura boscosa en una longitud de 4355 m. Llega al punto donde converge la vereda Quebradón, San Francisco, Jaho hasta llegar al cauce de la quebrada de Barandas sobre los 2.400 msnm en la vereda el Quebradón
30	821262	791507	Avanza hacia occidente de forma sinuosa en longitud de 2512 m hasta llegar a cauce de afluente de quebrada de barandas en la vereda Quebradón
31	821062	792514	Avanza hacia oriente de forma sinuosa en longitud de 2569 m hasta llegar a cauce de quebrada sin identificar afluente de la quebrada barandas en la vereda Quebradón

TRAMO	Х	Υ	Descripción
32	821251	793461	Avanza hacia oriente de forma sinuosa en longitud de 1243 m hasta llegar a cauce de quebrada sin identificar afluente de la quebrada barandas en la vereda Quebradón a 2300 msnm
33	820855	793905	Se desvía hacia el oriente haciendo un retorno hacia noroccidente hasta llegar a cauce de quebrada sin identificar la cual es afluente de la quebrada Quebradón a una altura de 2400 msnm
34	819186	794388	Continúa en sentido noroccidente siguiendo la curva 2.400 msnm hasta llegar al cauce de la quebrada el Quebradón en punto cercano a su nacimiento en límites entre las veredas Quebradón y Zaragoza del municipio de Íquira en longitud de 3165 m
35	819857	796206	Sigue en sentido nororiente en tramo de 3333 m de forma sinuosa siguiendo el margen de un bosque ripario en una depresión del terreno hasta llegar al nacimiento de fuente hídrica sin identificar que vierte sus aguas a la quebrada Nazareth a una altura de 1980 msnm
36	821458	797018	Continúa siguiendo las curvas del terreno sobre cota 2.500 msnm hasta nacimiento de fuente hídrica no identificada que vierte sus aguas sobre la quebrada Nazareth en la vereda del mismo nombre
37	823003	795683	Sigue por el lecho de la quebrada Nazareth hacia el sur en un tramo de 2.156 m hasta llegar a punto cercano de confluencia de los límites de las veredas san francisco, Quebradón y Nazareth, en el punto donde desemboca fuente hídrica sin identificar.
38	824836	797413	Se desvía hacia el oriente en contra de la pendiente hasta llegar a cota 2400, luego sigue esta curva hasta el nacimiento de fuente hídrica sin identificar que desciende por las veredas Lejanías y San José de occidente en el municipio de Íquira hasta desembocar en el rio Íquira, el tramo total es de 3670 m
39	824599	798720	Toma rumbo norte siguiendo de forma paralela a la cota 2.400 hasta encontrar el cauce de quebrada sin identificar que desciende a través de la vereda El Rosario para desembocar rio Íquira. El tramo total tiene 3207 m de longitud
40	824180	800497	Continúa moviéndose entre las cotas 2300 - 2400 bordeando cobertura boscosa, ingresa a la vereda Narváez en el municipio de Íquira hasta llegar a fuente hídrica que vierte sus aguas al rio Íquira, el tramo total tiene 461 m de longitud
41	823753	801208	Sigue con rumbo norte y moviéndose entre cotas 2300 - 2400 hasta punto de intersección entre fuente hídrica sin identificar la cual vierte sus aguas al rio Íquira y sirve de límite entre las veredas La armenia y Narváez y el límite entre los municipios de Teruel e Íquira. El tramo total tiene una longitud de 1549 m
42	827295	801709	Cambia de rumbo para dirigirse hacia el oriente en un tramo de 7123 m de forma oscilante sobre la cota 2300 hasta nacimiento del rio La María en el municipio de Teruel
43	828536	803328	Avanza en una longitud de 2570 m siguiendo los límites entre las veredas La Mina y La Floresta con la vereda La Armenia, hasta llegar al cauce de la quebrada la Floresta.
44	828949	805228	Se orienta con dirección al norte oscilando entre las cotas 2200 - 2400 hacia los límites de las veredas La Armenia y Corrales hasta llegar al cauce de la quebrada Horizonte en el punto que desemboca en el Rio Pedernal, el tramo total es de 4095 m de longitud
45	829464	805372	sigue por la cota 2300 en longitud de 664 m hasta llegar al cauce de la quebrada las nubes
46	831671	804783	Avanza en dirección oriente en un tramo de 4487 m siguiendo de forma paralela la cota 2300 hasta llegar al cauce de la quiebra San

TRAMO	Х	Y	Descripción
			Luis en la vereda pedernal
47	831990	805797	En un tramo de 1387 m y oscilando entre las curvas 2300 -2400 hasta llegar a cauce de quebrada El Cedral en la vereda Pedernal
48	831696	807007	En un tramo de 3057 m avanza hacia el norte, bordeando cobertura boscosa oscilando entre cotas 2300 - 2400 hasta la quebrada Playa Rica en el municipio de Palermo, en límite entre las veredas El Viso y Horizonte
49	830598	807843	Continúa en la misma dirección y oscilando entre las cotas 2300-2400 hasta llegar al nacimiento de la quebrada San Isidro en un tramo de 1541 m
50	829596	807697	Cambia de rumbo hacia occidente en un tramo de 1463 m siguiendo la dirección de la cota 2400 hasta llegar a quebrada El Rincón.
51	828550	808528	Continúa en rumbo noroccidente en un tramo de 1760 m oscila entre las cotas 2300-2400 hasta llegar a punto de intersección entre quebrada El Nilo y cota 2400 en la vereda Brisas del Nilo
52	828084	809203	Sigue la cota 2400 hasta llegar al límite entre los municipios de Santa María y Palermo
53	827659	808031	Se dirige hacia el sur en un tramo de 1821 m hasta llegar a quebrada sin identificar la cual vierte sus aguas al rio El Carmen
54	826453	807624	Se dirige hacia el sur en un tramo de 2094 m hasta llegar a quebrada sin identificar la cual vierte sus aguas al rio El Carmen
55	824888	806453	Se dirige hacia el sur en un tramo de 3461 m hasta llegar a cauce de rio El Carmen en la vereda Carmen de Bolívar en el municipio de Santa María
56	823703	804761	En un tramo de 2347 m hasta encontrarse con el PNN Nevado del Huila
			Desde el punto 56 a 1 avanza sin superponerse con el PNN Nevado del Huila, estos límites están por ajustarse en cuanto se suministre la capa definitiva correspondiente al PNN para poder hacer el ajuste del límite del PNR.



Figura 57. Delimitación del polígono propuesto para CBOB.

17 CATEGORIA PROPUESTA

Teniendo en cuenta la revisión de información secundaria, la solicitud de información a las autoridades competentes, la realización de talleres veredales y con los COLAP y alcaldías y las jornadas de trabajo con diferentes instituciones y asistentes, se realizó el proceso de análisis del diagnóstico de Cerro Banderas – Ojo Blanco, teniendo en cuenta las características biofísicas y socioeconómicas del área.

A partir del diagnóstico y de las recomendaciones recibidas en las diferentes reuniones realizadas entre personas con experiencia en el área, personas con experiencia en procesos de homologación, personas de la academia y gremios; se realizó el análisis de las categorías a homologar el polígono propuesto Cerro Banderas - Ojo Blanco.

Dada la condición de naturalidad del área, y según el análisis de contraste (Tabla 58) se observa que el polígono propuesto cumple con los atributos de biodiversidad por su composición y función, de los ecosistemas originales, pero no permanece el atributo estructura requerido para la categoría de manejo de PNR de acuerdo a lo establecido en el Decreto 2372 de 2010" (compilado en el Decreto 1076 de 2015). Esto indica la necesidad de realizar acciones de manejo para recuperar la integridad ecológica del área y de homologar a una categoría de manejo que asegure la conservación del recurso hídrico y garantice la oferta de bienes y servicios ambientales predominantes.

Sin embargo, teniendo en cuenta las matrices realizadas para los procesos de homologación de la Tatacoa y en Corredor Biológico Guacharos Puracé, se realizó la calificación de la Matriz de Homologación con las categorías parques naturales regionales, distrito regional de manejo integrado y distrito regional de conservación de suelos. Se identificaron (14) variables, tomando como base el método Batelle – Columbus ajustado a las condiciones necesidades del proceso de homologación.

Se agruparon las variables en las 4 categorías recomendadas por el método Batelle – Columbus. Categoría de ecología (Representatividad de ecosistemas naturales, Ecosistemas estratégicos, Actividad agrícola, Actividad pecuaria, Biodiversidad); Categoría de contaminación ambiental (Servicios ecosistémicos de apoyo, Actividad minera, Actividad de hidrocarburos); categoría de aspectos estéticos (Cobertura, Oferta hídrica) y categoría de aspectos de interés humano (Ocupación humana, Predios de propiedad del estado, Proyectos e inversiones realizadas, Gestión comunitaria).

En cuanto a la ponderación, se tuvo en cuenta una calificación entre 0,5 y 1,5 dependiendo la importancia que se le quería dar a cada variable, y a la existencia o no de variables relacionadas.

Calificación máxima 0,5	Actividad minera, actividad de hidrocarburos, representatividad de ecosistemas naturales, actividad agrícola, actividad pecuaria, biodiversidad, predios de propiedad del estado, proyectos e inversiones realizadas, gestión comunitaria.
Calificación máxima 1,0	Ecosistemas estratégicos, servicios ecosistémicos de apoyo, cobertura, ocupación humana.
Calificación máxima 1,5	Oferta hídrica.

La calificación máxima total posible fue de 10; al realizar la calificación de las variables se obtuvieron los siguientes resultados (Tabla 66):

- 8,2 para distrito regional de manejo integrado
- 7,4 para distrito regional de conservación de suelos.
- 6,5 para parque natural regional.

De acuerdo a los resultados de la matriz se encontró que categoría de manejo que obtuvo el puntaje más alto fue el DISTRITO REGIONAL DE MANEJO INTEGRADO, categoría definida como "Espacio geográfico, en el que los paisajes y ecosistemas mantienen su composición y función, aunque su estructura haya sido modificada y

cuyos valores naturales y culturales asociadas se ponen al alcance de la población humana para destinarlos a su uso sostenible, preservación, restauración, conocimiento y disfrute", según el decreto 2372 de 2010, compilado en el Decreto 1076 de 2015.

Esta categoría de manejo hace parte del SINAP, y cumple con las características de ser un área protegida bajo conservación con la gente, como fue creada en el 2007, al permitir el uso sostenible entre sus zonas. La relación de las comunidades campesinas con los recursos naturales son un pilar muy importante para el cumplimiento de los objetivos de conservación, permitiendo la restauración ecológica a largo plazo, manteniendo los atributos de la biodiversidad con la elaboración del plan de manejo y su efectiva ejecución.

					Tabla 66. Matriz de análisis y evaluación de criterios para las categorías a homologar Cerro Banderas - Ojo Blanco							
Categoría	VARIABLE	DATO	Máximo	DRMI	DCS	PNR						
Ecología	Representatividad de Ecosistemas Naturales	Alta insuficiencia 2%, Sin Vacío 81%, transformado 17%	0,5	0,25	0,25	0,5						
Ecología	Ecosistemas Estratégicos	Existe un Páramo según Von Humboldt, con extensión de 1.626 ha del complejo Nevado del Huila - Moras	1	0,75	0,75	1						
Ecología	Actividad agrícola	En el 50% de los predios caracterizados se realiza actividad agrícola, ocupando 665 ha con cultivos.	0,5	0,5	0,5	0						
Ecología	Actividad pecuaria	Existen en el polígono propuesto 1.224 ha de pastos y forrajes (19% del área), con una carga de 1.286 cabezas de ganado pecuario.	0,5	0,5	0,5	0						
Ecología	Biodiversidad	307 especies de flora y 254 especies de fauna identificadas dentro del polígono propuesto, de las cuales con 35 especies en algún grado de amenaza (30 de fauna y 5 de flora). Según UICN: 2 CR, 6 EN, 27 VU. De ellas 2 son especies sombrilla y 18 endémicas.	0,5	0,4	0,2	0,5						
Contaminación ambiental	Servicios Ecosistémicos de Apoyo	El área analizada de CBOB limita con el PNN Nevado del Huila complementando la función protectora del mismo	1	0,9	0,7	1						
Contaminación ambiental	Actividad minera	Existen dos (2) solicitudes mineras vigentes en curso, con una extensión de 826 hectáreas	0,5	0,4	0,4	0,4						
Contaminación ambiental	Actividad de hidrocarburos	1 convenio de exploración y explotación en ejecución, otorgados a Ecopetrol S.A, con 508 ha dentro del polígono propuesto	0,5	0	0	0,4						

Categoría	VARIABLE	DATO	Máximo	DRMI	DCS	PNR
Aspectos estéticos	Cobertura	79,90% en coberturas naturales (17.637 hectáreas)	1	0,85	0,5	0,95
Aspectos estéticos	Oferta hídrica	Oferta hídrica SRDM: 554.837 L/s. Demanda aprox. 5.759 viviendas beneficiadas por acueductos.	1,5	1,2	1,2	1,3
Aspectos de interés humano	Ocupación humana	Aproximadamente 299 familias con 769 personas dentro del área.	1	1	1	0,2
Aspectos de interés humano	Predios de propiedad del Estado y privados	9.487 ha son predios Baldíos, 4.577 ha son predios del PNN. 8.010 ha son predios privados. Los municipios han comprado 1.449 ha.	0,5	0,5	0,5	0,1
Aspectos de interés humano	Proyectos e inversiones realizadas	Restauración 54%, administración 25%, Producción sostenible 9%, monitoreo 8%, preservación 3%, ecoturismo 1%; de un total de inversión de \$2.066.848.847	0,5	0,4	0,4	0,1
Aspectos de interés humano	Gestión Comunitaria	Se identificaron 11 organizaciones comunitarias productivas legalmente constituidas	0,5	0,5	0,5	0
TOTAL			10	8,2	7,4	6,5

DRMI: Distrito Regional de Manejo Integrado, DCS: Distrito de Conservación de Suelos, PNR: Parque Natural Regional.

18 PROPUESTA DE ZONIFICACIÓN Y DE RÉGIMEN DE USO

18.1 ZONIFICACIÓN VIGENTE

Según el acuerdo 012 (CONIF - CAM, 2007) estas son las categorías de ordenamiento del área protegida actualmente (Figura 58):

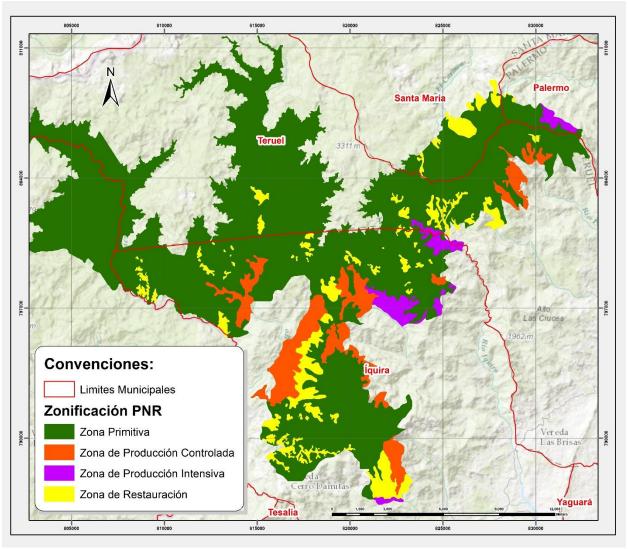


Figura 58. Zonificación vigente del PNR CBOB.

Fuente: (CONIF - CAM, 2007).

ZONA PRIMITIVA: Áreas en las que existen ecosistemas representativos y frágiles, inalterados o muy poco alterados (en buen estado de conservación), en los cuales existe alta diversidad biótica. Se propone mantener las condiciones actuales de los

ecosistemas e incluso mejorarlas en los sitios que así se requieran y estarán sujetas a estrictas medidas de control y vigilancia (CONIF - CAM, 2007).

ZONA DE RESTAURACIÓN: Conjunto de territorios en los cuales se manifiesta un grado de deterioro, pero que propicien o admitan la continuidad de los procesos naturales. Se propone que serán desarrolladas actividades tendientes al restablecimiento, recuperación y restauración de los ecosistemas originales (CONIF - CAM, 2007).

ZONA DE PRODUCCIÓN: Territorios que han sido objeto de utilización y aprovechamiento de los recursos naturales y que, por su aptitud de suelos, resultan adecuados para el establecimiento de actividades productivas acordes con los principios de desarrollo sostenible. Existen dos tipos: Zonas de Producción Controlada y Zonas de Producción Intensiva (CONIF - CAM, 2007).

La CAM generó en el año 2007 el plan de manejo (CONIF - CAM, 2007), en donde se encuentra la descripción del área, la identificación de los objetos de conservación, la delimitación y la zonificación, del Parque Natural Regional Cerro Banderas – Ojo Blanco.

En el plan se estableció el ordenamiento, la normatividad ambiental del país, las medidas y normas de la administración y manejo de cada una de las zonas, e informa de los programas y proyectos que deberán atender en el corto y mediano plazo para una gestión efectiva.

18.2 PROPUESTA DE ZONIFICACIÓN

Para la propuesta de zonificación se tuvo en cuenta el "estudio y diseño de instrumentos de política para el manejo y administración de las áreas protegidas de carácter regional del departamento del Huila", el cual mostró el análisis de prioridades

de conservación de las áreas protegidas del Huila (Gobernación de Huila, 2016). Se presenta el proceso de priorización dentro del PNR Cerro Banderas Ojo Blanco, el cual resultó en la clasificación de prioridad como muy alta del 64%, el 7% en alta, el 12% en Media-alta, el 17% en media. Este análisis indica que Cerro Banderas es de gran importancia para la conectividad en su área de estudio, siendo muy importante restaurar de manera prioritaria las áreas que fueron definidas como de prioridad muy alta, alta y media-alta (Figura 59).

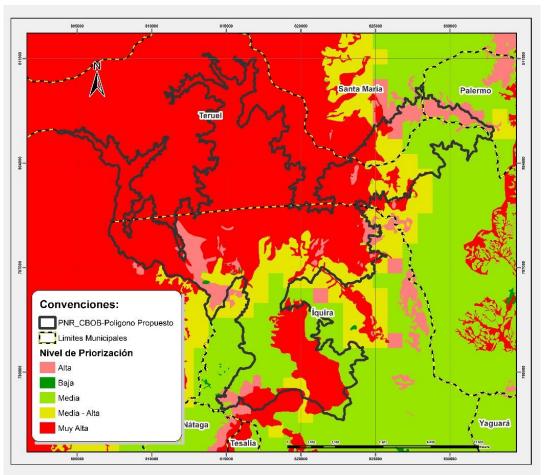


Figura 59. Nivel de prioridad en Cerro Banderas Ojo Blanco.

Fuente: (Gobernación de Huila, 2016, pág. 43)

Para la construcción de la zonificación se tuvo en cuenta como zona de preservación la cobertura natural actual (Tabla 32). Para la zona de restauración se analizaron varios criterios como: presencia de páramos, rondas hídricas (30 metros a lado y lado de las quebradas y 50 metros para los ríos), y priorización muy alta, alta y media alta del

trabajo de la Figura 59 (si cumple con alguno de estos criterios se considera como área de restauración en caso de que no estén con cobertura natural). Para los predios públicos (baldíos y PNN), se considera como área de restauración las zonas que están en cobertura seminatural. La zona de uso público está representada por los senderos ecoturísticos y las vías principales. Por último, la zona de uso sostenible representa el resto del área, al estar con sistemas productivos, y no estar en las áreas priorizadas, quedaría para uso sostenible (Figura 60).

Teniendo en cuenta todos estos criterios y el análisis de las variables biofísicas, sociales, económicas y culturales, se presenta la siguiente zonificación (Tabla 67), que está integrada por la zona de preservación (80,9%), zona de restauración (5,3%), zona de uso sostenible (13,7%) y zona general de uso público (0,1%).

Tabla 67. Propuesta de zonificación del DRMI Cerro Banderas Ojo Blanco

711 repareta de Zerimeaeren der Er am Cente Bander de Gje Bianee									
ZONA DE MANEJO	ÁREA (ha)	PORCENTAJE (%)							
Zona de Preservación	17.856,1	80,9%							
Zona de Restauración	1.178,7	5,3%							
Zona de Uso Sostenible	3.022,9	13,7%							
Zona de uso público	16,2	0,1%							
ÁREA TOTAL	22.073,8	100%							

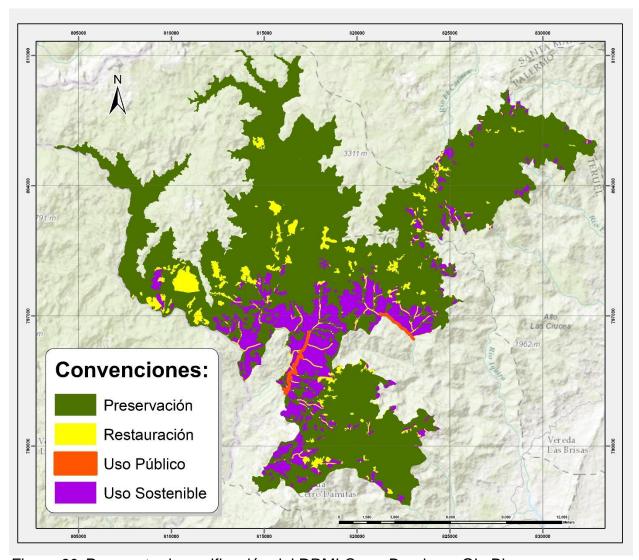


Figura 60. Propuesta de zonificación del DRMI Cerro Banderas Ojo Blanco

- A. **Zona de preservación:** Comprenden todas aquellas actividades de protección, regulación, ordenamiento y control y vigilancia, dirigidas al mantenimiento de los atributos, composición, estructura y función de la biodiversidad, evitando al máximo la intervención humana y sus efectos.
- B. Zona de Restauración: Comprenden todas las actividades de recuperación y rehabilitación de ecosistemas; manejo, repoblación, reintroducción o trasplante de especies y enriquecimiento y manejo de hábitats, dirigidas a recuperar los atributos de la biodiversidad.

- C. Zona de Uso Sostenible: Comprenden todas las actividades de producción, extracción, construcción, adecuación o mantenimiento de infraestructura, relacionadas con el aprovechamiento sostenible de la biodiversidad, así como las actividades agrícolas, ganaderas, mineras, forestales, industriales y los proyectos de desarrollo y habitacionales no nucleadas con restricciones en la densidad de ocupación y construcción siempre y cuando no alteren los atributos de la biodiversidad existentes.
- D. Zona general de Uso Público: Comprenden todas las actividades de conocimiento como investigación, monitoreo o educación ambiental que aumentan la información, el conocimiento, el intercambio de saberes, la sensibilidad y conciencia frente a temas ambientales y la comprensión de los valores y funciones naturales, sociales y culturales de la biodiversidad. También comprenden todas las actividades de disfrute como recreación y ecoturismo, incluyendo la construcción, adecuación o mantenimiento de la infraestructura necesaria para su desarrollo, que no alteran los atributos de la biodiversidad previstos para la categoría.

18.3 RÉGIMEN DE USOS

Los usos y las consecuentes actividades permitidas para cada una de las zonas, atenderán a las características de las mismas de conformidad en lo previsto en el artículo 2.2.2.1.4.1 del Decreto 1076 de 2015 y, deben ceñirse a las siguientes definiciones:

a) **Usos de preservación:** Comprenden todas aquellas actividades de protección, regulación, ordenamiento y control y vigilancia, dirigidas al mantenimiento de los atributos, composición, estructura y función de la biodiversidad, evitando al máximo la intervención humana y sus efectos.

- b) **Usos de restauración:** Comprenden todas las actividades de recuperación y rehabilitación de ecosistemas; manejo, repoblación, reintroducción o trasplante de especies y enriquecimiento y manejo de hábitats, dirigidas a recuperar los atributos de la biodiversidad.
- c) **Usos de Conocimiento:** Comprenden todas las actividades de investigación, monitoreo o educación ambiental que aumentan la información, el conocimiento, el intercambio de saberes, la sensibilidad y conciencia frente a temas ambientales y la comprensión de los valores y funciones naturales, sociales y culturales de la biodiversidad.
- d) **De uso sostenible:** Comprenden todas las actividades de producción, extracción, construcción, adecuación o mantenimiento de infraestructura, relacionadas con el aprovechamiento sostenible de la biodiversidad, así como las actividades agrícolas, ganaderas, forestales, industriales y los proyectos de desarrollo y habitacionales no nucleadas con restricciones en la densidad de ocupación y construcción siempre y cuando no alteren los atributos de la biodiversidad previstos para el Distrito Regional de Manejo Integrado.
- e) **Usos de disfrute:** Comprenden todas las actividades de recreación y ecoturismo, incluyendo la construcción, adecuación o mantenimiento de la infraestructura necesaria para su desarrollo, que no alteran los atributos de la biodiversidad previstos para el Distrito Regional de Manejo Integrado.

Se prohíben todos los usos y actividades que no estén contemplados como permitidos, conforme lo señala el parágrafo 2 del artículo 2.2.2.1.4.2 y el artículo 2.2.2.1.2.5 del Decreto 1076 de 2015 y, en especial las actividades de construcción de hidroeléctricas, exploración y explotación de hidrocarburos, actividades mineras con excepción a los materiales de mantenimiento de las vías existentes, en general todos los tipos de usos

que afecten el cumplimiento de los objetivos de conservación, alteren la estructura, la composición y función de la biodiversidad características del área.

REFERENCIAS BIBLIOGRÁFICAS

- Acosta, A. R. (2017). Lista de los Anfibios de Colombia. *Referencia en linea*. Obtenido de http://www.batrachia.com
- Alcaldía de Teruel. (2000). Plan de ordenamiento territorial de Teruel. Teruel (Huila): CAM.
- Alcaldía de Teruel. (2016). Plan de desarrollo del municipio de Teruel Huila. Teruel.
- Armesto, L. O., & Señaris, J. C. (2017). Anuros del norte de los andes: patrones de riqueza de especies y estado de conservación. *Papéis Avulsos de Zoologia 57(39)*, 491-526.
- Bernal, R., Gradstein, S., & Celis, M. (2007). *Catálogo de las Plantas de Colombia: Cifras preliminares de la flora de Colombia*. Bogotá. Obtenido de http://rgbernalg.googlepages.com/cifraspreliminaresdelafloradecolombia
- Bernal, R., Gradstein, S., & Celis, M. (2015). *Catálogo de plantas y líquenes de Colombia*. Bogotá.: Instituto de Ciencias Naturales, Universidad Nacional de Colombia. Obtenido de http://catalogoplantasdecolombia.unal.edu.co
- CAM. (2011). Acuerdo no.013 de 2011. Neiva.
- CECIL, INAT, JICA. (1990). *Curso Avanzado: Módulo "Área de manejo de aguas"*. Fusagasuga: ITA Valsalice Comunidad Salesiana.
- Chaparro, S. (2017). Listado actualizado de las aves endémicas y casi-endémicas de Colombia. Version 5.2. *Instituto de Investigación de Recursos Biológicos Alexander von Humboldt*. Obtenido de https://doi.org/10.15472/tozuue accessed via GBIF.o
- Chaparro, S., Echeverry, M. Á., Córdoba, S., & Sua, A. (2013). Listado actualizado de las aves endémicas y casi-endémicas de Colombia. *Biota Colombiana*, vol. 14, núm. 2, julio-diciembre, pp. 235-272.
- CONIF CAM. (2007). Plan de manejo Parque Natural Regional Cerro Banderas Ojo Blanco. Bogotá.
- Contraloría Departamental del Huila. (2008). El impacto de las regalías petrolíferas en el departamento del Huila. Neiva.
- Corporación Autónoma del Alto Magdalena CAM. (2007). Acuerdo No. 012 de 2007. Neiva.
- Corporación Autónoma del Alto Magdalena CAM, Universidad Distrital Francisco José de Caldas. (2017-2018). Estudio de caracterización ecológica rápida de la biodiversidad en el Parque Natural Regional Cerro Banderas Ojo Blanco. Neiva.
- Corporación Autonoma Regional del Alto Magdalena CAM. (2016). *Propuesta de homologación PNR CBOB*. Neiva.
- Corporación Autónoma Regional del Alto Magdalena CAM. (2017). Estudio Regional del Agua ERA. Neiva.
- Corporación Autónoma Regional del Alto Magdalena. (2005). *Diagnóstico territorial municipal de Íquira*. Neiva: CAM.
- Decreto 2372 de 2010, Por el cual se reglamenta el Decreto Ley 2811 de 1994, la Ley 99 de 1993, la Ley 165 de 1994 y el Decreto Ley 216 de 2003, en relación con el Sistema Nacional de Áreas Protegidas, las categorías de manejo que lo conforman y se dictan otras disposiciones.
- Departamento Administrativo Nacional de Estadistica DANE. (2005). *Proyección de población municipales por área*. Obtenido de https://www.dane.gov.co/index.php/estadisticas-portema/demografia-y-poblacion/proyecciones-de-poblacion

- Departamento Nacional de Planeación DNP. (15 de 10 de 2018). Fichas de caracterización municipal. Obtenido de Terridata: http://web.sirhuila.gov.co/index.php/fichas-dnp/fichas-de-caracterizacion-municipal/1370-fichas-de-caracterizacion-municipal-2020
- Galindo, J. (2007). Efectos de la fragmentación del paisaje sobre las poblaciones de mamíferos, el caso de los murciélagos de Los Tuxtlas, Veracruz. *Tópicos en sistemática*, biogeografía, ecología y conservación de mamíferos. Universidad Autónoma, 97-114.
- Gobernación de Huila. (2016). Prioridades de conservacion para areas protegidas de caracter regional del departamento de Huila. Neiva.
- Hernández, J., & Sánchez, H. (1992). Biomas terrestres de Colombia. En G. Halffter, *La diversidad biológica de Iberoamerica I* (págs. 153-174). Xalapa, Ver. México: Acta Zoológica Mexicana.
- Hernández, J., Hurtado, A., Ortiz, R., & Walschburger, T. (1992). Unidades biogeográficas de Colombia. En G. Halffter, *La diversidad biológica de iberoamérica I* (págs. 105-152). Xalapa, Ver. México: Acta Zoológica Mexicana.
- IGAC. (2014). *Metodología para la clasificación de las tierras por su capacidad de uso*. Bogotá: Documento interno.
- Instituto de hidrología, meteorología y estudios ambientales IDEAM. (2011). Registros de Estaciones Meteorológicas.
- Instituto de Hidrología, Meteorología y Estudios Ambientales IDEAM. (2013). *Lineamientos conceptuales y metodológicos para la evaluación regional del agua*. Bogotá.
- Instituto de hidrología, meteorología y estudios ambientales IDEAM. (2018). Reporte de avance del estudio nacional de agua ENA. Bogotá, D.C.
- Instituto Humboldt CORTOLIMA. (2015). Estudios técnicos, económicos, sociales y ambientales complejo de páramos las hermosas y nevado del Huila Moras. Bogotá DC.
- Lynch y otros. (1997). Biogeographic patterns of Colombian frogs and toads. *Revista de la Academia Colombiana de Ciencias*, 21(80), 237-248.
- Lynch, J. (1986). Origins of the high Andean herpetological fauna. En F. M. Vuilleuimier, *High Altitude Tropical Biology* (págs. 478-499.). Nueva York: Oxford University Press.
- Mantilla, H., & Montenegro, O. (2016). Nueva especie de Lonchorhina (Chiroptera: Phyllostomidae) de Chiribiquete, Guayana colombiana. *Revista Biodiversidad Neotropical*, 6(2 Jul-Dic), 171-187.
- Mast, J., Fule, P., Moore, M., Covington, W., & Waltz, A. (1999). Restoration of presettlement age structure of an Arizona ponderosa pine forest. *Ecol. Appl.* 9, 228–239.
- ONF ANDINA. (2016). Estudio y diseño de instrumentos de política para el manejo y administración de las áreas protegidas de caracter Regional del departamento del Huila. Neiva.
- Oster, R. (1979). Las precipitaciones en Colombia. Colombia Geográfica, 6 (2)., 147 p.
- Parques Nacionales Naturales. (2013). Concepto Técnico Nº 20132100059651. Bogotá, DC.
- Parques Naturales Nacionales. (2005). Plan de Manejo Parque Nacional Natural Nevado del Huila 2005-2009. Bogotá DC.
- Pereira, V., Stevenson, P., Bueno, M., & Nassar, F. (2010). *primatología en colombia: avances al principio del milenio*. Bogotá: Fundación Universitaria San Martín.
- PNUD. (2010). *Huila: análisis de conflictividad*. Bogotá: Programa de las Naciones Unidas para el Desarrollo.

- Ramírez, H., Suárez, A., & González, J. (2016). Cambios recientes a la lista de los mamíferos de Colombia. *Mammalogy notes*, *3*(1), 1-9.
- Rangel, J., & Garzón, A. (1995). Sierra Nevada de Santa Marta (Colombia). En J. Rangel-Ch., *Colombia Diversidad Biótica. Vol. I.* (págs. p. 155-170.). Instituto de Ciencias Naturales.
- Renner, S. (1983). The widespread ocurrence of anther destruction of Trigona bees in Melastomataceae. *Biotropica* 15, 257-267.
- Royo y Gómez, J. (1942). Contribución al conocimiento de la geología del Valle Superior del Magdalena, departamento del Huila. Bogotá: Inf. 329.
- RUNAP. (2018). *Areas protegidas del Huila*. http://runap.parquesnacionales.gov.co/departamento/945.
- Secretaría de Agricultura y Minería del departamento del Huila. (2017). *Evaluación Agropecuaria del Huila*. Neiva.
- Sistema de información regional SIR. (15 de 10 de 2017). *Información socioeconómica*. Obtenido de http://web.sirhuila.gov.co/index.php/estadisticas/sociales
- Solari, S., Muñoz, Y., Rodríguez, J., Defler, T., Ramírez, H. E., & Trujillo, F. (2013). Riqueza, endemismo y conservación de los mamíferos de Colombia. *Mastozoología Neotropical*, 20 (2), 301-365.
- Stevenson, P. &. (2008). *Lagothrix lugens. La Lista Roja de Especies Amenazadas 2008 de la UICN*. Obtenido de
 - http://dx.doi.org/10.2305/IUCN.UK.2008.RLTS.T39926A10289596.en
- Wurdack. (1973). *Melastomataceae. Volumen VIII. Primera parte.* Caracas, Venezuela: Instituto Botánico, Dirección De Recursos Naturales Y Renovables.

Anexo 1. CLIMA E HIDROLOGÍA

1 Brillo Solar

Con base en los registros de Brillo Solar (Tabla 1) de la estación Santa María y San Rafael se elaboraron los histogramas (Figura 1, Figura 2).

Tabla 1. Medias decadales y mensuales multianuales de Brillo Solar de las estaciones

seleccionadas para el área de influencia del Polígono propuesto

seleccionadas para el area de inildericia del Poligono propuesto													
PERIODOS	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	OCT	NOV	DIC	VALOR ANUAL
				Е	STACIĆ	N SAN	ITA MA	RÍA					
1 DÉCADA	48	39	21,2	35	42,2	33	47	41,1	47	46	37,6	42	478
2 DÉCADA	47	50	28,3	35	41,1	31	39	40,1	51	33	34,3	48	478
3 DÉCADA	57	29	40,5	42	40,8	35	47	46	53	56	39,9	61	546
TOTAL MES	153	118	90	113	124	99	132	127	150	135	112	150	1.502
				E	STACIO	AR NČ	N RAFA	\EL					
PERIODOS	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	OCT	NOV	DIC	
1 DÉCADA	41	30	22	28	33,7	39	39	33,4	27	36	30,7	30	388
2 DÉCADA	38	38	23,4	30	32,2	35	32	27	38	20	23,7	30	367
3 DÉCADA	40	27	25,9	34	33,7	36	37	32,5	41	47	29,4	44	428
TOTAL MES	119	95	71	92	100	109	108	93	106	103	84	104	1.183

Fuente: (Instituto de hidrología, meteorología y estudios ambientales - IDEAM, 2011).

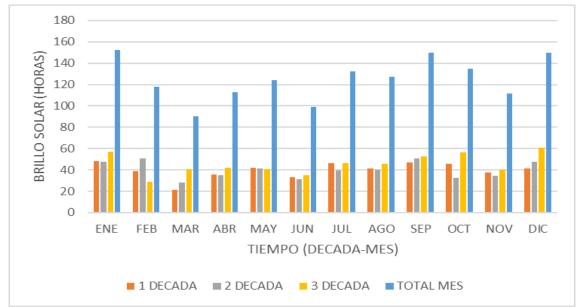


Figura 1. Valores medios decadales y mensuales multianuales de Brillo Solar de la estación Santa María.

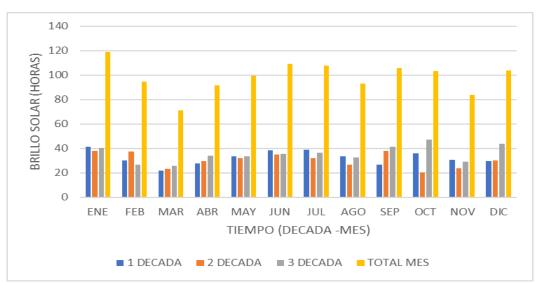


Figura 2. Valores medios decadales y mensuales multianuales de Brillo Solar de la estación San Rafael.

El Brillo Solar o también conocido como Insolación, es la cantidad de radiación solar directa incidente por unidad de superficie horizontal a una elevación determinada. La duración total de la insolación, es decir el número de horas de sol durante un periodo fijo, se llama heliofanía absoluta. La relación ente el número de horas en que el sol ha brillado y la duración astronómica del día, en un lugar y fecha dados, se llama heliofanía relativa.

El brillo solar es un parámetro importante del clima y determinante del desarrollo y la producción agrícola, por ser el principal agente de la fotosíntesis y del desarrollo de las plantas.

Partiendo de la información suministrada por las estaciones de Santa María y San Rafael, se tiene que durante el período de septiembre - octubre y diciembre - enero se obtienen los mayores registros de brillo solar, alcanzando unos valores que oscilan entre 135 y 153 horas; mientras que durante el período de marzo a abril se obtienen los menores registros de brillo solar, alcanzando unos valores que oscilan entre 71 y 92 horas, siendo marzo el mes de menor intensidad lumínica con 71 horas, registradas en la estación de San Rafael.

El registro heliográfico muestra una radiación directa promedio de 1.342 horas/año, o sea 3,7 horas/día, siendo la radiación más alta en el mes de enero con un total de 153 horas, equivalente a un promedio diario de 5,1 horas; el valor más bajo corresponde al mes de marzo con 71 horas, equivalente a una radiación de 2,4 horas/día.

Lo anterior determina un comportamiento inverso al de la nubosidad la cual se incrementa en el periodo lluvioso, es decir que el brillo solar disminuye durante la época lluviosa y aumenta en periodos menos lluviosos, lo anterior debido a que la

presencia de nubosidad obstaculiza el paso de la radicación.

2 Evaporación

Con base en los registros de Evaporación (Tabla 2) de las estaciones Santa María y San Rafael, se elaboraron los histogramas (Figura 3, Figura 4).

Tabla 2. Distribución media decadal, mensual y anual de evaporación de las estaciones seleccionadas en el área de influencia del Polígono propuesto

ocicooloriaa	ac cii	or are	Ja ao		ioia a	0, , 0,	,90,,0	יקטיקי	40010				
PERIODOS	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	OCT	NOV	DIC	VALOR ANUAL
ESTACIÓN SANTA MARÍA													
1 DÉCADA	34,2	35,9	24,3	31,6	38,3	40,2	41,1	38,4	44,1	41,4	30,6	30,5	431
2 DÉCADA	33,3	37,7	31,3	35,4	33,7	35,2	38,3	39,4	39,7	32,3	29,7	38,6	425
3 DÉCADA	38,8	31,1	35,1	33,5	41,1	38,4	45,1	45,9	47,3	45,4	28,5	35,6	466
TOTAL MES	106	105	91	101	113	114	125	124	131	119	89	105	1.321
	ESTACIÓN SAN RAFAEL												
PERIODOS	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	OCT	NOV	DIC	
1 DÉCADA	35	33	25,3	33,6	33,7	34,9	36,9	39,4	41,1	36,7	33,3	33	416
2 DÉCADA	34,5	39,1	39	33	31,3	31,4	36,9	36,2	41,1	38,3	33,9	28,9	424
3 DÉCADA	36,8	29,7	35	32,6	35	36,6	43	44,5	48,3	41,3	42,9	38,6	464
TOTAL MES	106	102	99	99	100	103	117	120	131	116	110	101	1.304

Fuente: (Instituto de hidrología, meteorología y estudios ambientales - IDEAM, 2011).

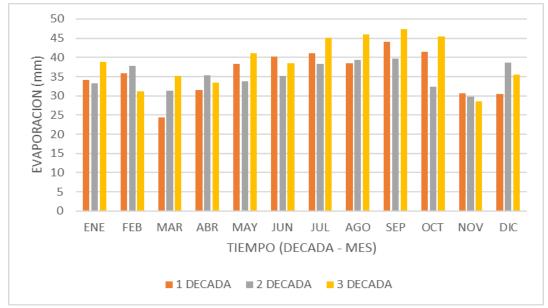


Figura 3. Valores medios decadales y mensuales multianuales de Evaporación de la estación Santa María.

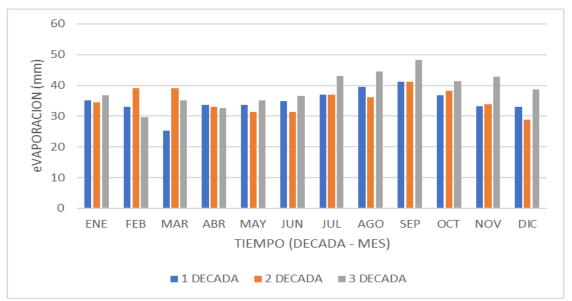


Figura 4. Valores medios decadales y mensuales multianuales de Evaporación de la estación San Rafael.

La evaporación depende principalmente de los siguientes factores: temperatura y salinidad del agua, humedad relativa y movimiento del aire, presión atmosférica y vientos. La cantidad de agua que puede evaporarse a partir de una superficie depende de la cantidad de calor que proviene del suelo, la cual varía con las condiciones geográficas (denominado gradiente de latitud) y con la elevación de la superficie con relación al nivel del mar (llamado gradiente hipsométrico).

El comportamiento de la evaporación se encuentra directamente relacionado con la incidencia del brillo solar, de tal forma que los períodos de mínima evaporación tenderán a ocurrir en la noche y en las épocas lluviosas cuando la humedad relativa es más alta.

Lo anterior determina que durante el mes de septiembre en las estaciones Santa María y San Rafael se registraron los mayores valores de evaporación (tanto decadal como mensual) con 131 mm/mes. En el mes de noviembre se registran los menores valores de evaporación con 89 mm/mes; para la estación Santa María y marzo con 99 mm/mes para la estación de San Rafael.

De acuerdo con la información anterior se establece que la evaporación presenta un comportamiento inverso al de la precipitación, donde se registran los mayores valores en los meses de agosto a octubre y diciembre a febrero.

Al comparar los datos de la evaporación con los de la precipitación media de la zona para las tres (3) estaciones en estudio, se puede apreciar que la evaporación mantiene un promedio bajo con respecto al régimen lluvioso de la zona, es decir la cantidad de agua que cae en el Parque es mayor que la que se evapora, lo cual se descarta una variabilidad del clima, que a veces ocurre por el elevado índice de evaporación con

respecto a la precipitación.

3. Cálculo de evapotranspiración potencial

La ETP se refiere a la cantidad de agua usada por las plantas en la transpiración a través de las hojas y en la evaporación directa desde la superficie del suelo, sin tener en cuenta los aportes de las aguas subterráneas ni las pérdidas por percolación.

La evapotranspiración depende de la interacción de factores climáticos, entre otros. La ETP varía en el curso del año, siendo mínima en períodos de invierno y máxima en períodos de verano. También varía con la latitud y la longitud (zona geográfica) que se considere.

Para lograr lo anterior, el cálculo de la Evapotranspiración potencial (ETP) se realizó por el método de Thornthwaite (1948), puesto que es el que mejor se ha comportado en zonas tropicales, además, por la disponibilidad de la información de las estaciones.

Para balances hídricos a nivel diario, el valor de la ETP debe obtenerse diariamente. Para los balances hídricos mensuales y/o decadales, si la ETP debe obtenerse a partir del cálculo de las fórmulas empíricas, este valor se calcula en forma mensual para ambos casos (CECIL, INAT, JICA, 1990). En la tercera década el número de días es: 8 para febrero, 10 para abril, junio, septiembre y noviembre, y 11 para enero, marzo, mayo, julio, agosto, octubre y diciembre.

Partiendo de los datos de temperatura de las tres (3) estaciones seleccionadas en el área de influencia, se calculó mediante inferencia dicha variable para el área del polígono propuesto para Cerro Banderas – Ojo Blanco (Tabla 3, Tabla 4, Tabla 5). Los valores de evapotranspiración potencial media permiten ver que son de tendencia homogéneos para la zona. El área del Polígono propuesto presenta una evapotranspiración potencial promedio aproximada de 965,63 mm al año.

Tabla 3. Cálculo de ETP decadal por Thornthwaite. Estación Santa María

MES	T			ETP (mm)
ENERO	20,7	8,59	2,27	77,15
1ª DÉCADA				24,80
2ª DÉCADA				24,89
3ª DÉCADA				28,36
FEBRERO	20,7	8,59	2,27	77,18
1ª DÉCADA				26,67
2ª DÉCADA				27,57
3ª DÉCADA				21,34
MARZO	20,7	8,59	2,27	77,18
1ª DÉCADA				25,79
2ª DÉCADA				24,90
3ª DÉCADA				28,00
ABRIL	21	8,78	2,27	79,75
1ª DÉCADA				26,02
2ª DÉCADA				26,58
3ª DÉCADA				17,81
MAYO	20,8	8,66	2,27	78,03
1ª DÉCADA				25,64

MES	Т		а	ETP (mm)
2ª DÉCADA				25,17
3ª DÉCADA				27,89
JUNIO	20,7	8,59	2,27	77,18
1ª DÉCADA				25,54
2ª DÉCADA				25,73
3ª DÉCADA				25,45
JULIO	20,7	8,59	2,27	77,18
1ª DÉCADA				25,17
2ª DÉCADA				24,90
3ª DÉCADA				27,49
AGOSTO	20,8	8,66	2,27	78,03
1ª DÉCADA				25,08
2ª DÉCADA				25,17
3ª DÉCADA				28,21
SEPTIEMBRE	21	8,78	2,27	79,75
1ª DÉCADA				26,11
2ª DÉCADA				26,58
3ª DÉCADA				26,11
OCTUBRE	20,8	8,66	2,27	78,03
1ª DÉCADA				25,64
2ª DÉCADA				25,17
3ª DÉCADA				27,69
NOVIEMBRE	20,5	8,47	2,27	75,50
1ª DÉCADA				25,17
2ª DÉCADA				25,17
3ª DÉCADA				24,99
DICIEMBRE	20,6	8,53	2,27	76,34
1ª DÉCADA				24,81
2ª DÉCADA				24,63
3ª DÉCADA				18,06
TOTAL ANUAL		103,49		922,59

Tabla 4. Cálculo de ETP decadal por Thornthwaite. Estación San Rafael

	. accada, pc.			
MES	T			ETP (mm)
ENERO	23,7	10,55	2,87	98,52
1ª DÉCADA				31,50
2ª DÉCADA				31,78
3ª DÉCADA				35,87
FEBRERO	23,5	10,41	2,87	95,93
1ª DÉCADA				33,43
2ª DÉCADA				34,26
3ª DÉCADA				25,84
MARZO	22,8	9,95	2,87	87,96
1ª DÉCADA				30,34
2ª DÉCADA				28,37
3ª DÉCADA				32,11
ABRIL	23,2	10,21	2,87	92,46
1ª DÉCADA				30,00
2ª DÉCADA				30,82
3ª DÉCADA				30,99
MAYO	23,6	10,48	2,87	97,11
1ª DÉCADA				31,16
2ª DÉCADA				31,33
3ª DÉCADA				35,28
JUNIO	23,9	10,68	2,87	100,70
1ª DÉCADA				32,82
2ª DÉCADA				33,57
3ª DÉCADA				32,95
JULIO	23,7	10,55	2,87	98,30
1ª DÉCADA				32,33
2ª DÉCADA				31,71
3ª DÉCADA				35,02
AGOSTO	23,8	10,61	2,87	99,49

	_			
MES	T		a	ETP (mm)
1ª DÉCADA				31,97
2ª DÉCADA				32,09
3ª DÉCADA				36,44
SEPTIEMBRE	24,3	10,95	2,87	105,61
1ª DÉCADA				34,17
2ª DÉCADA				35,20
3ª DÉCADA				34,56
OCTUBRE	24,1	10,82	2,87	103,13
1ª DÉCADA				33,91
2ª DÉCADA				33,27
3ª DÉCADA				35,84
NOVIEMBRE	23,3	10,28	2,87	93,61
1ª DÉCADA				31,89
2ª DÉCADA				31,20
3ª DÉCADA				31,12
DICIEMBRE	23,5	10,41	2,87	95,93
1ª DÉCADA				31,03
2ª DÉCADA				30,95
3ª DÉCADA				22,69
TOTAL ANUAL		125,90		1157,80

Tabla 5. Cálculo de ETP decadal por Thornthwaite. Estación Terpeya Colombia

MES T I a ENERO 18,8 7,43 1,5 1ª DÉCADA 2ª DÉCADA 3ª DÉCADA FEBRERO 18,7 7,37 1,5	95 68,92 21,92 22,23 25,22
1ª DÉCADA 2ª DÉCADA 3ª DÉCADA FEBRERO 18,7 7,37 1,5	21,92 22,23 25,22 95 68,12
2ª DÉCADA 3ª DÉCADA FEBRERO 18,7 7,37 1,6	22,23 25,22 95 68,12
3ª DÉCADA FEBRERO 18,7 7,37 1,5	25,22 95 68,12
FEBRERO 18,7 7,37 1,9	95 68,12
	23,63
1ª DÉCADA	
2ª DÉCADA	24,33
3ª DÉCADA	18,65
MARZO 18,4 7,19 1,9	95 66,01
1º DÉCADA	22,31
2ª DÉCADA	21,29
3ª DÉCADA	23,94
ABRIL 18,7 7,37 1,9	95 68,12
1º DÉCADA	22,24
2ª DÉCADA	22,71
3ª DÉCADA	22,54
MAYO 18,8 7,43 1,9	95 68,84
1º DÉCADA	22,37
2º DÉCADA	22,21
3ª DÉCADA	24,70
JUNIO 18,8 7,43 1,9	95 68,84
1º DÉCADA	22,70
2ª DÉCADA	22,95
3ª DÉCADA	22,62
JULIO 18,7 7,37 1,9	95 68,12
1º DÉCADA	22,30
2ª DÉCADA	21,98
3ª DÉCADA	24,43
AGOSTO 19 7,55 1,9	95 70,27
1º DÉCADA	22,44
2ª DÉCADA	22,67
3º DÉCADA	25,75
SEPTIEMBRE 19,6 7,91 1,9	95 74,66
1ª DÉCADA	24,15
2ª DÉCADA	24,89
3ª DÉCADA	23,99
OCTUBRE 18,8 7,43 1,9	95 68,84
1ª DÉCADA	23,10
2ª DÉCADA	22,21
3ª DÉCADA	24,52

MES	T	1	а	ETP (mm)
NOVIEMBRE	18,6	7,31	1,95	67,42
1ª DÉCADA				22,38
2ª DÉCADA				22,47
3ª DÉCADA				22,08
DICIEMBRE	18,4	7,19	1,95	66,01
1ª DÉCADA				21,69
2ª DÉCADA				21,29
3ª DÉCADA				15,62
TOTAL ANUAL		88,96		816,50

4. Índice de retención y regulación hídrica (IRH)

Este índice mide la capacidad de retención de humedad de las cuencas con base en la distribución de las series de frecuencias acumuladas de los caudales diarios. Este índice se mueve en el rango entre 0 y 1, siendo los valores más bajos los que se interpretan como de menor regulación (IDEAM, 2010). En la Tabla 6, se presentan las categorías para este índice.

Tabla 6. Rangos y categorías para el índice de retención y regulación hídrica (IRH)

RANGO DE VALORES IRH	CATEGORÍA	CARACTERÍSTICAS
> 0,85	MUY ALTO	Capacidad de la cuenca para retener y regu muy alta
0,75 -0,85	ALTO	Capacidad de la cuenca para retener y regu alta
0,65 – 0,75		Capacidad de la cuenca para retener y regu media
0,50 - 0,65	BAJU	Capacidad de la cuenca para retener y regu baja
< 0,50	MUY BAJO	Capacidad de la cuenca para retener y regu muy baja

En la Figura 5, Figura 6, Figura 7, se presenta la estimación del indicador y su magnitud en toda la superficie de la SZH 2108 – Rio Yaguará, de la SZH 2112 – Rio Bache y de la SZH 2105 – Río Páez. Las tres SZH presentan alta capacidad para retener humedad y mantener condiciones de regulación en los años medio y seco. Por su parte, las condiciones de moderada regulación se presentan en el año húmedo, debido a que las altas precipitaciones desbordan su capacidad y se presenta mayor escurrimiento.

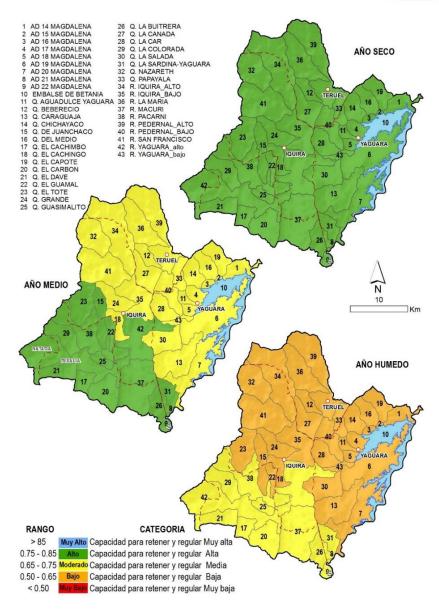


Figura 5. Índice de retención y regulación hídrica (IRH) SZH 2108 – Río Yaguará.

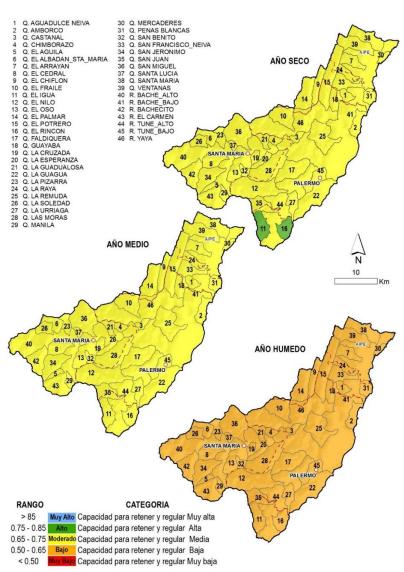


Figura 6. Índice de retención y regulación hídrica (IRH) SZH 2112 - Río Bache.

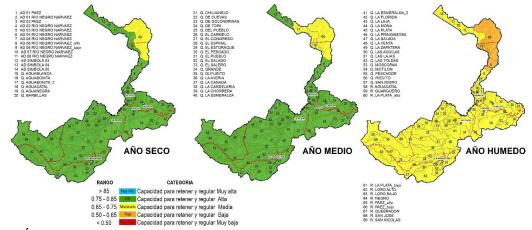


Figura 7. Índice de retención y regulación hídrica (IRH) SZH 2105 – Río Páez.

En la Tabla 7 se presenta el IRH estimado para los años hidrológicos medio, seco y húmedo, para cada una de las subcuencas y/o microcuencas que se encuentran en el área del polígono. El comportamiento de este índice es el descrito anteriormente, en los años agrologicos medio y seco se presenta alta y media regulación y para el año húmedo el índice es medio y bajo.

Tabla 7. Índice de retención y regulación hídrica (IRH) sobre las subcuencas y/o microcuencas del polígono propuesto para Cerro Banderas – Ojo Blanco

		INDICE DE REGULACIÓN HIDRICA = IRH (Vp/Vt)					
SZH	SUBCUENCA	Año Hidrológico Medio		Año Hidrológico Seco		Año Hidrológico Húmedo	
		RANGO	CATEGORIA	RANGO	CATEGORIA	RANGO	CATEGORIA
2105	Rio Páez	0,77	ALTO	0,79	ALTO	0,67	MEDIO
9	AD 06 RIO NEGRO NARVAEZ_alto	0,75	ALTO	0,76	ALTO	0,65	BAJO
10	AD 07 RIO NEGRO NARVAEZ	0,75	MEDIO	0,76	ALTO	0,65	BAJO
11	AD 08 RIO NEGRO NARVAEZ	0,75	MEDIO	0,75	ALTO	0,65	MEDIO
62	R. NEGRO	0,74	MEDIO	0,75	MEDIO	0,63	BAJO
2108	Rio Yaguará	0,75	MEDIO	0,76	ALTO	0,64	BAJO
15	Q. DE JUANCHACO	0,75	ALTO	0,76	ALTO	0,65	BAJO
23	Q. EL TOTE	0,75	ALTO	0,76	ALTO	0,65	BAJO
24	Q. GRANDE	0,75	MEDIO	0,76	ALTO	0,64	BAJO
32	Q. NAZARETH	0,74	MEDIO	0,75	ALTO	0,64	BAJO
34	R. IQUIRA_ALTO	0,74	MEDIO	0,75	ALTO	0,63	BAJO
36	R. LA MARIA	0,74	MEDIO	0,75	ALTO	0,63	BAJO
39	R. PEDERNAL_ALTO	0,74	MEDIO	0,75	ALTO	0,63	BAJO
41	R. SAN FRANCISCO	0,75	MEDIO	0,76	ALTO	0,64	BAJO
2112	Rio Bache	0,73	MEDIO	0,74	MEDIO	0,62	BAJO
12	Q. EL NILO	0,74	MEDIO	0,75	MEDIO	0,62	BAJO
29	Q. MANILA	0,74	MEDIO	0,75	MEDIO	0,62	BAJO
35	Q. SAN JUAN	0,74	MEDIO	0,75	MEDIO	0,63	BAJO
43	R. EL CARMEN	0,74	MEDIO	0,75	MEDIO	0,62	BAJO

5. Índice de alteración potencial de la calidad de agua (IACAL)

Las presiones por contaminación sobre los sistemas hídricos y cuerpos de agua del país se analizan a partir de la estimación de cargas contaminantes puntuales vertidas por los sectores industrial, domestico, sacrificio de ganado y beneficio del café. Esta estimación se hace para cada una de las variables que integran el índice de Alteración Potencial de la Calidad del Agua (IACAL): Demanda Biológica de Oxigeno DBO, Demanda Química de Oxigeno DQO, Solidos Suspendidos Totales SST, Nitrógeno Total NT y Fosforo Total PT. Este indicador es una referente de la presión por contaminantes sobre las condiciones de calidad del agua en los sistemas hídricos superficiales. En la Tabla 8 se listan los rangos y categorías del IACAL.

Tabla 8. Categoría y descriptor del IACAL.

IACAL			
PROMEDIO CATEGORÍA			
(NT + PT + SST)	+ DBO + (DQO – DBO) / 5		
Categoría Valor			
Baja	1		
Moderada	2		
Media Alta	3		
Alta 4			
Muy Alta	5		

La falta de saneamiento en los municipios (áreas urbanas y rurales) y de tratamiento de las aguas residuales, generan grandes presiones sobre la calidad del agua de las fuentes hídricas del polígono propuesto. Así mismo, la disposición de las aguas de beneficio de café, que es la principal actividad agropecuaria en los municipios que hacen parte del polígono propuesto para Cerro Banderas — Ojo Blanco. Para el año hidrológico seco (AHS), la mayoría de las fuentes hídricas reciben una gran carga contaminante pasando la categoría, en la mayoría de las subcuencas y/o microcuencas, a los rangos de alta a muy alta (Tabla 9). Dada la reducción del caudal disponible, el agua disponible no diluye la carga contaminante y esta termina almacenándose en el suelo, generando problemas mayores a futuro.

Tabla 9. Índice de uso del agua (IUA) sobre las subcuencas y/o microcuencas del

polígono propuesto para Cerro Banderas – Oio Blanco

		INDICE DE AFECTACIÓN POTENCIAL A LA CALIDAD DEL AGUA = IACAL						
SZH	ZH SUBCUENCA		Año Hidrológico Medio		Año Hidrológico Seco		Año Hidrológico Húmedo	
		RANGO	CATEGORIA	RANGO	CATEGORIA	RANGO	CATEGORIA	
2105	Rio Páez	4,00	ALTA	5,00	MUY ALTA	1,00	BAJA	
9	AD 06 RIO NEGRO NARVAEZ_alto	4,00	ALTA	5,00	MUY ALTA	1,00	BAJA	
10	AD 07 RIO NEGRO NARVAEZ	2,00	MODERADA	3,00	MEDIA ALTA	2,00	MODERADA	
11	AD 08 RIO NEGRO NARVAEZ	1,00	BAJA	1,00	BAJA	1,00	BAJA	
62	R. NEGRO	1,00	BAJA	2,00	MODERADA	1,00	BAJA	
2108	Rio Yaguará	1,00	BAJA	2,00	MODERADA	1,00	BAJA	
15	Q. DE JUANCHACO	4,00	ALTA	4,00	ALTA	1,00	BAJA	
23	Q. EL TOTE	4,00	ALTA	5,00	MUY ALTA	2,00	MODERADA	
24	Q. GRANDE	4,00	ALTA	5,00	MUY ALTA	2,00	MODERADA	
32	Q. NAZARETH	3,00	MEDIA ALTA	4,00	ALTA	2,00	MODERADA	
34	R. IQUIRA_ALTO	3,00	MEDIA ALTA	4,00	ALTA	2,00	MODERADA	
36	R. LA MARIA	5,00	MUY ALTA	5,00	MUY ALTA	2,00	MODERADA	
39	R. PEDERNAL_ALTO	4,00	ALTA	5,00	MUY ALTA	1,00	BAJA	
41	R. SAN FRANCISCO	3,00	MEDIA ALTA	4,00	ALTA	2,00	MODERADA	
2112	Rio Bache	2,00	MODERADA	4,00	ALTA	1,00	BAJA	
12	Q. EL NILO	4,00	ALTA	5,00	MUY ALTA	1,00	BAJA	
29	Q. MANILA	2,00	MODERADA	3,00	MEDIA ALTA	1,00	BAJA	
35	Q. SAN JUAN	4,00	ALTA	5,00	MUY ALTA	1,00	BAJA	
43	R. EL CARMEN	3,00	MEDIA ALTA	4,00	ALTA	2,00	MODERADA	

Con las categorías encontradas, se deben encender las alarmas para contrarrestar de manera inmediata la degradación ambiental de las fuentes hídricas del área del polígono propuesto, como una estrategia de las autoridades y de la población que habita los municipios que lo conforman.

6. Índice de vulnerabilidad por desabastecimiento hídrico (IVH)

Grado de fragilidad del sistema hídrico para mantener una oferta para el abastecimiento de agua, que ante amenazas –como periodos largos de estiaje o eventos como el Fenómeno cálido del Pacífico (El Niño) – podría generar riesgos de desabastecimiento.

El IVH se determina a través de una matriz de relación de rangos del Índice de regulación hídrica (IRH) y el Índice de uso de agua (IUA). Ver Tabla 10.

Tabla 10. Categoría y descriptor del IVH

Control of the Contro	The second second second	
Índice de uso de agua	Índice de regulación	Categoría Vulnerabilidad
Muy bajo	Alto	Muy bajo
Muy bajo	Moderado	Bajo
Muy bajo	Bajo	Medio
Muy bajo	Muy bajo	Medio
Bajo	Alto	Bajo
Bajo	Moderado	Bajo
Bajo	Bajo	Medio
Bajo	Muy bajo	Medio
Medio	Alto	Medio
Medio	Moderado	Medio
Medio	Bajo	Alto
Medio	Muy bajo	Alto
Alto	Alto	Medio
Alto	Moderado	Alto
Alto	Bajo	Alto
Alto	Muy bajo	Muy alto
Muy alto	Alto	Medio
Muy alto	Moderado	Alto
Muy alto	Вајо	Alto
Muy alto	Muy bajo	Muy alto

Rio Páez, Rio Yaguará y Rio Bache.

Para año medio estas subzonas presentan un comportamiento similar, mostrando un IVH entre Muy Bajo, Bajo, moderado y en dos quebradas alto y una oferta disponible muy alta con respecto a la demanda.

Para año seco se observan unas pocas áreas de color amarillos que significan que el IVH es moderado, el resto de la Subzona presenta una mejor condición con un IVH bajo a muy bajo, manteniéndose la oferta disponible mayor que la demanda, situación de la que se puede inferir que no se genera ningún riesgo de desabastecimiento.

Para año húmedo la condición del índice de vulnerabilidad por desabastecimiento IVH, pasa a ser media, lo que significa que la oferta disponible es mucho mayor con respecto a la demanda.

En general no se presenta riesgo de desabastecimiento en las subzonas analizadas; sin embargo, en la subcuenca de la Quebrada San Juan y El Nilo, perteneciente a SZH 2112, se presenta el IVH en categoría alto, generando riesgo de desabastecimiento; debe considerarse que esta subcuenca es pequeña. Ver la Figura 8, Figura 9, Figura 10.

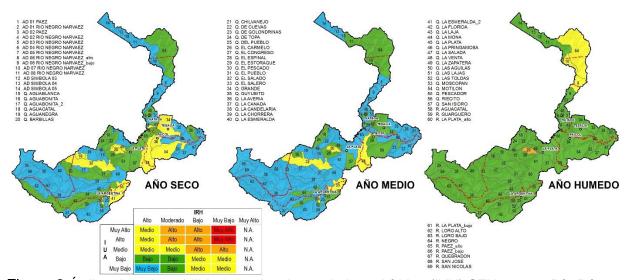


Figura 8. Índice de vulnerabilidad por desabastecimiento hídrico (IVH) SZH 2105 – Río Páez.

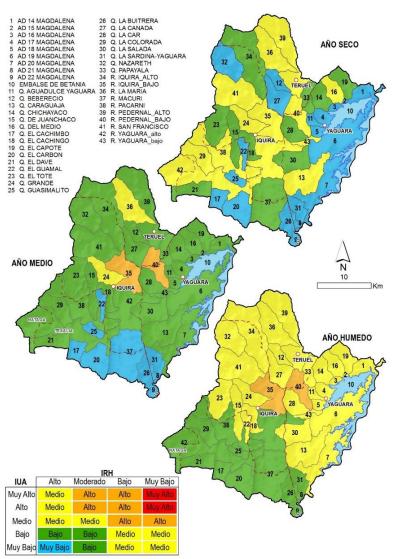


Figura 9. Índice de vulnerabilidad por desabastecimiento hídrico SZH 2108 – Río Yaguará.

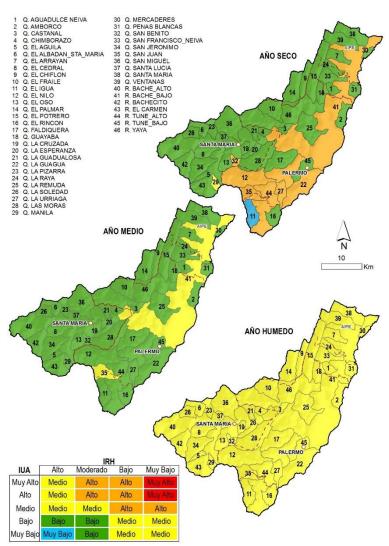


Figura 10. Índice de vulnerabilidad por desabastecimiento hídrico (IVH) SZH 2112 – Río Bache.

El comportamiento de las categorías es el mismo para las subcuencas y/o microcuencas del polígono propuesto. Los resultados de la evaluación se listan en la Tabla 11. La mayor categoría llega en el periodo seco a medio, situación que da un parte de tranquilidad sobre la posibilidad de desabastecimiento.

Tabla 11. Índice de vulnerabilidad por desabastecimiento hídrico (IVH) sobre las subcuencas y/o microcuencas del polígono propuesto para Cerro Banderas Ojo Blanco

	·	Indice de vulnerabilidad	ídrico = IVH (IRH vs IUA)	
SZH	SUBCUENCA	Año Hidrológico Medio Año Hidrológi		Año Hidrológico Húmedo
		CATEGORIA	CATEGORIA	CATEGORIA
2105	Rio Páez	MUY BAJO	MUY BAJO	BAJO
9	AD 06 RIO NEGRO NARVAEZ_alto	MUY BAJO	MUY BAJO	MEDIO
10	AD 07 RIO NEGRO NARVAEZ	BAJO	MUY BAJO	MEDIO
11	AD 08 RIO NEGRO NARVAEZ	BAJO	MUY BAJO	BAJO

SZH	SUBCUENCA	Indice de vulnerabilidad al desabastecimiento hídrico = IVH (IRH vs IUA)						
62	R. NEGRO	BAJO	BAJO	MEDIO				
2108	Rio Yaguará	BAJO	MUY BAJO	MEDIO				
15	Q. DE JUANCHACO	BAJO	BAJO	MEDIO				
23	Q. EL TOTE	BAJO	BAJO	MEDIO				
24	Q. GRANDE	MEDIO	MEDIO	MEDIO				
32	Q. NAZARETH	BAJO	MUY BAJO	MEDIO				
34	R. IQUIRA_ALTO	BAJO	BAJO	MEDIO				
36	R. LA MARIA	MEDIO	MEDIO	MEDIO				
39	R. PEDERNAL_ALTO	BAJO	MEDIO	MEDIO				
41	R. SAN FRANCISCO	BAJO	MEDIO	MEDIO				
2112	Rio Bache	BAJO	BAJO	MEDIO				
12	Q. EL NILO	BAJO	ALTO	MEDIO				
29	Q. MANILA	BAJO	MEDIO	MEDIO				
35	Q. SAN JUAN	MEDIO	ALTO	MEDIO				
43	R. EL CARMEN	BAJO	BAJO	MEDIO				

7. Índice de vulnerabilidad a eventos torrenciales (IVET)

La vulnerabilidad se expresa en relación con los índices morfométricos de torrencialidad e Índice de variabilidad.

- El Índice Morfométrico de Torrencialidad es la relación entre los parámetros morfométricos como el coeficiente de compacidad, la pendiente media de la cuenca y la densidad de drenaje, que son indicativos de la forma como se concentra la escorrentía, la oportunidad de infiltración, la velocidad y capacidad de arrastre de sedimentos en una cuenca, la eficiencia o rapidez de la escorrentía y de sedimentos para salir de la cuenca luego de un evento de precipitación y con ello inferir cual podría ser el nivel de susceptibilidad a procesos torrenciales (Rivas y Soto, 2009 en (Instituto de Hidrología, Meteorología y Estudios Ambientales IDEAM, 2013).
- El Índice de Variabilidad muestra el comportamiento de los caudales en una determinada cuenca definiendo una cuenca torrencial como aquella que presenta una mayor variabilidad, es decir, donde existen diferencias grandes entre los caudales mínimos que se presentan y los valores máximos.

El índice morfométrico se constituye en la relación entre las variables morfométricas como el coeficiente de compacidad o de forma, la pendiente media de la cuenca y la densidad de drenaje, los cuales son indicativos de la forma como se concentra la escorrentía, la oportunidad de infiltración, la velocidad y capacidad de arrastre de sedimentos en una cuenca, la eficiencia o rapidez de la escorrentía y de los sedimentos para salir de la cuenca luego de un evento de precipitación y con ello inferir cual podría ser el nivel de susceptibilidad a procesos torrenciales (Rivas y Soto, 2009 en (Instituto de Hidrología, Meteorología y Estudios Ambientales - IDEAM, 2013).

Se define una serie de valores promedio de las variables indicadas, estableciendo seis categorías o rangos, mientras mayor sean estos valores, hay una mayor tendencia para que en la cuenca se presenten procesos torrenciales, es decir, existe una mayor vulnerabilidad a este tipo de procesos (IDEAM, 2011).

Las categorías del índice morfométrico van desde muy alta hasta muy baja, en función de los parámetros pendiente media de la cuenca, densidad de drenaje y coeficiente de forma.

El índice de vulnerabilidad frente a eventos torrenciales, indica la relación existente entre las características de la forma de una cuenca que son indicativos de la torrencialidad en la misma, en relación con las condiciones hidrológicas en dicha cuenca. La Tabla 12 muestra la clasificación de la vulnerabilidad frente a eventos torrenciales una vez se estima cada uno de los índices mencionados.

Tabla 12. Clasificación del índice de vulnerabilidad frente a eventos torrenciales (IVET)

Índice de	Índice	Índice morfométrico de torrencialidad				
Variabilidad	Muy Baja	Baja	Media	Alta	Muy alta	
Muy Baja	Baja	Baja	Media	Alta	Alta	
Baja	Baja	Media	Media	Alta	Muy alta	
Media	Baja	Media	Alta	Alta	Muy alta	
Alta	Media	Media	Alta	Muy alta	Muy alta	
Muy alta	Media	Alta	Alta	Muy alta	Muy alta	

De acuerdo con la Figura 11, Figura 12, Figura 13, en la mayor parte del área de la SZH 2105 – Río Páez, SZH 2108 – Rio Yaguará y SZH 2112 – Rio Bache, se categoriza con vulnerabilidad alta las subcuencas y/o microcuencas que las conforman. Esta categoría, muestra que las áreas presentan una respuesta hidrológica rápida y frecuente en periodos lluviosos, que es soportada por la cobertura de sus suelos.

La condición baja, en cambio, presenta una respuesta lenta a los procesos hidrológicos y los eventos se presentan solo en épocas de precipitaciones que exceden ampliamente el comportamiento normal de las mismas. Esta se ubica en las áreas planas a semiplanas de la SZH 2108 – Río Yaguará.

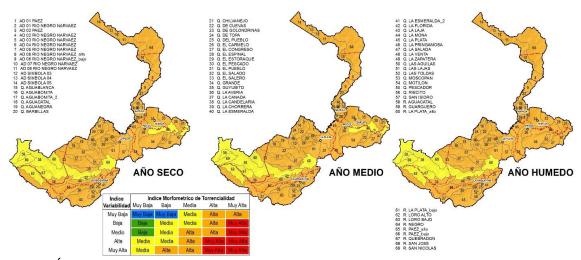


Figura 11. Índice de vulnerabilidad a eventos torrenciales (IVET) SZH 2105 - Río Páez.

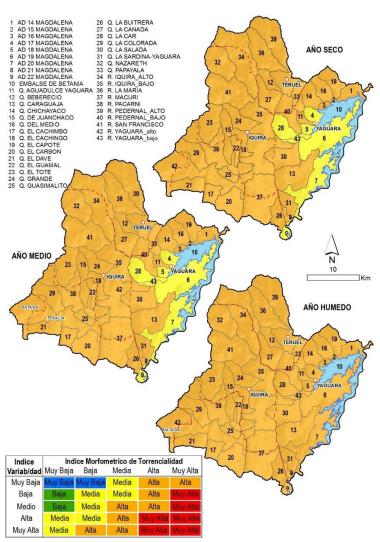


Figura 12. Índice de vulnerabilidad a eventos torrenciales (IVET) SZH 2108 – Río Yaguará.

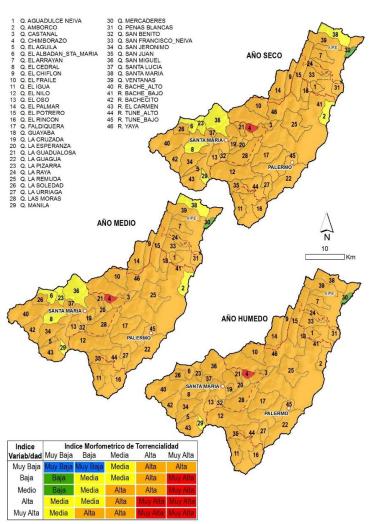


Figura 13. Indice de vulnerabilidad a eventos torrenciales (IVET) SZH 2112 – Río Bache.

En la Tabla 13 se presenta el IVET para todas las subcuencas y/o microcuencas que se encuentran en el polígono propuesto. En su totalidad están en categoría alta y su comportamiento se ajusta a lo descrito con anterioridad. Estas presentan susceptibilidad a eventos torrenciales, que se originan porque los coeficientes de compacidad se encuentran entre 1 y 1,25, es decir cuencas conforma oval oblonga a casi redonda, pendientes medias altas y una alta densidad de drenaje, que facilitan la concentración de las precipitaciones, la velocidad de la escorrentía y por tanto el arrastre de sedimentos. La frecuencia de los sucesos no genera complicaciones dada la cobertura actual. Sin embargo, los procesos de deforestación adelantados en el área, en pro de aumentar la frontera agropecuaria, predisponen la zona una vulnerabilidad muy alta, con crecientes de gran tamaño y poder destructor.

Tabla 13. Índice de vulnerabilidad a eventos torrenciales (IVET) sobre las subcuencas v/o microcuencas del polígono propuesto para Cerro Banderas – Ojo Blanco

<u>y/0 fi</u>	nicrocuencas dei poligono	propuesto para C	<u>erro Banderas – O</u>	јо віапсо		
OTH CHECKEN		INDICE DE VULENRABILIDAD A EVENTOS TORRENCIALES = IVET (Iva vs IMT)				
SZH	SUBCUENCA	Año Hidrológico Medio	Año Hidrológico Seco	Año Hidrológico Húmedo		
		CATEGORIA	CATEGORIA	CATEGORIA		
2105	Rio Páez	ALTA	ALTA	ALTA		
9	AD 06 RIO NEGRO NARVAEZ_alto	ALTA	ALTA	ALTA		
10	AD 07 RIO NEGRO NARVAEZ	ALTA	ALTA	ALTA		
11	AD 08 RIO NEGRO NARVAEZ	ALTA	ALTA	ALTA		
62	R. NEGRO	ALTA	ALTA	ALTA		
2108	Rio Yaguará	ALTA	ALTA	ALTA		
15	Q. DE JUANCHACO	ALTA	ALTA	ALTA		
23	Q. EL TOTE	ALTA	ALTA	ALTA		
24	Q. GRANDE	ALTA	ALTA	ALTA		
32	Q. NAZARETH	ALTA	ALTA	ALTA		
34	R. IQUIRA_ALTO	ALTA	ALTA	ALTA		
36	R. LA MARIA	ALTA	ALTA	ALTA		
39	R. PEDERNAL_ALTO	ALTA	ALTA	ALTA		
41	R. SAN FRANCISCO	ALTA	ALTA	ALTA		
2112	Rio Bache	ALTA	ALTA	ALTA		
12	Q. EL NILO	ALTA	ALTA	ALTA		
29	Q. MANILA	MEDIA	MEDIA	MEDIA		
35	Q. SAN JUAN	ALTA	ALTA	ALTA		
43	R. EL CARMEN	ALTA	ALTA	ALTA		

Anexo 2. Listado de especies de flora presentes en el polígono propuesto para Cerro Banderas - Ojo Blanco

ORDEN	FAMILIA	NOMBRE CIENTÍFICO	NOMBRE COMÚN
Alismatales	Araceae	Anthurium bogotense	Anturio
		Oreopanax bogotensis	Mano de oso
		Anthurium amoenum	
		Anthurium longigeniculatum	
		Anthurium sanguineum	
		Anthurium sp	
		Philodendron oligospermum	
	Araliaceae	Oreopanax mutisianus	Yuco, mano de oso
		Schefflera bogotensis	Cheflera
Apiales	Apiaceae	Arracacia xanthorrhiza	Arracacha, Apio Criollo
		Azorella crenata	Frutilla de monte
		Azorella multifida	
	Araliaceae	Schefflera bejucosa	Copé
Aquifoliales	Aquifoliaceae	llex sp1	
·	·	llex sp3	Encenillo
		llex sp2	
Arecales	Arecaceae	Aiphanes concinna	
	Primulaceae	Stylogyne sp1	
		Geissanthus sp1	
		Cybianthus sp1	
		Myrsine sp	
		Cybianthus sp2	
Asparagales	Orchidiaceae	Epidendrum erosum	orquidea
7, 2, 2, 3, 2, 2		Epidendrum chioneum	orquidea
		Masdevallia strumifera	orquidea
		Odontoglossum weirii	orquidea
		Oncidium pyramidale	orquidea
		Brachionidium brevicaudatum	
		Crocodeilanthe sp	
		Cyrtochilum porrigens	
		Epidendrum secundum	
		Epidendrum sp	
		Maxillaria embreei	
		Oncidium sp	
		Ornithidium aureum	
		Pleurothallis cordata	
		Ponthieva cf. maculata	
		Stelis sp	
		Crocodeilanthe sp	
		Cyrtochilum porrigens	
		Epidendrum secundum	
		Epidendrum sp	
		Maxillaria embreei	
		Ornithidium aureum	
		Pleurothallis cordata	
		Ponthieva maculata	
Asterales	Asteraceae	Gynoxys tolimensis	Blanquillo
Asiciales	Asicialeae	Diplostephium bicolor	caminadera
		טוטוטונים ווונוווו טונטוטו	cammauera

ORDEN	FAMILIA	NOMBRE CIENTÍFICO	NOMBRE COMÚN
ONDEN	IAMILIA	Espeletia argentea	Frailejón
		Espeletia cabrerensis	Frailejón
		Espeletia grandiflora	Frailejón
		Espeletia killipii	Frailejón
		Espeletia leporina	Frailejón
		Espeletia miradorensis	Frailejón
		Espeletia summapacis	Frailejón
		Espeletia tapirophila	Frailejón
		Espeletiopsis corymbosa	Guacharaco
		Gnaphalium antennarioides	Guacharaco
		Gnaphalium graveolus	
		Gnaphalium purpureum	
		Senecio coccineus	
		Senecio coccineus Senecio formosus	Árnica morada
		Senecio culcitioides	Huira-Huira
		Taraxacum officinale	Achicoria amarga
	0	Asteraceae sp	
	Campanulaceae	Centropogon ferrugineus	
		Lobelia tenera	
		Siphocampylus bentamianus	
		Centropogon sp1	
		Centropogon sp2	
Boraginales	Boraginaceae	Cordia bifurcata	
Caryophillales	Phytolaccaceae	Phytolacca rugosa	Higuerilla
	Polygonaceae	Rumex acetosella	Acederilla, acetosilla
Chloranthales	Chloranthaceae	Hedyosmum bonplandianum	Granizo
		Hedyosmum anisodorum	
		Hedyosmum translucidum	
		Hedyosmum sp	Granizo
Cornales	Loasaceae	Nasa puracensis	
Cucurbitales	Begoniaceae	Begonia urticae	
		Begonia toledana	
Cyatheales	Cyatheaceae	Cyathea squamipes	Palma boba
•	•	Cyathea cf. caracasana	
Dipsacales	Adoxaceae	Sambucus nigra	
,		Viburnum tinoides	
	Caprifoliaceae	Valeriana plantaginea	
Equisetopsida	Ericales	Clethra revoluta	
1		Saurauia brachybotrys	Dulumoco
		Bejaria resinosa	
		Cavendishia bracteata	
		Gaultheria anastomosans	
		Gaultheria hapalotricha	
		Macleania rupestris	
		Pernettya prostrata	
		Themistoclesia dependens	
		Disterigma acuminatum	
		Geissanthus occidentalis	Conó
			Copé
		Myrsine coriacea	Garrucho
		Myrsine latifolia	Copé
		Symplocos sp	

ORDEN	FAMILIA	NOMBRE CIENTÍFICO	NOMBRE COMÚN
		Geissanthus sp1	
		Parathesis candolleana	Uvito
		Symplocos serrulata	
		Stylogyne turbacensis	
		Cybianthus poeppigii	
		Cybianthus prieurii	
		Cybianthus pastensis	
		Cybianthus perseoides	
		Styrax trichocalyx	
		Cavendishia tarapotana	
		Freziera sp1	
		Saurauia sp1	
		Clethra sp2	Encenillo
		Oreopanax sp	Literillo
		Clethra sp1	
		Ternstroemia meridionalis	
		Freziera sp2	
		Saurauia sp2	
		Saurauia strigillosa	
E U ' . I	F	Psammisia columbiensis	
Escalloniales	Escalloniaceae	Escallonia myrtilloides	
Fagales	Betulaceae	Alnus acuminata	Aliso
	Fagaceae	Quercus humboldtii	Roble
Fabales	Polygalaceae	Monnina sp	
Gentianales	Rubiaceae	Galium corymbosum	
		Palicourea apicata	
		Palicourea sp1	
		Faramea flavicans	
		Rubiaceae sp1	
		Coussarea grandifolia	
		Psychotria sp1	
		Cinchona pubescens	
		Faramea ovalis	
		Faramea coerulescens	
		Rubiaceae sp2	
		Rubiaceae sp1	Café de monte
		Psychotria sp1	
		Palicourea sp2	
		Cinchona sp	
Gunnerales	Gunneraceae	Gunnera tajumbina	
Lamiales	Plantaginaceae	Digitalis purpurea	
	Besleriaceae	Besleria reticulata	
		Besleria solanoides	
	Gesneriaceae	Alloplectus aquatilis	
	333131143040	Columnea dielsii	
		Columnea anisophylla	
		Columnea sp	
		Drymonia serrulata	
		Drymonia sp	
		Glossoloma ichthyoderma	
		Glossoloma sp1	

ORDEN	FAMILIA	NOMBRE CIENTÍFICO	NOMBRE COMÚN
		Kohleria affinis	
		Kohleria hirsuta	
Laurales	Lauraceae	Nectandra purpurea	Laurel
		Ocotea sericea	Quimulá, Laurel dorado
		Ocotea calophylla	, , , , , , , , , , , , , , , , , , , ,
		Ocotea sp2	
		Aiouea sp1	
		Aiouea montana	
		Aiouea sp nova	
		Ocotea carchiensis	Corozo
		Aniba muca	00.020
		Endlicheria sp1	
		Ocotea sp3	Rabo de pato
		Rhodostemonodaphne laxa	rabe de pare
		Lauraceae sp2	
	Monimiaceae	Mollinedia tomentosa	
Liliales	Alstromeliaceae	Bomarea angustipetala	
Liliales	Alstromeliaceae	Bomarea crassifolia	
		Bomarea floribunda	
		Bomarea hirsuta	
Magnalialas	Annongogo	Guatteria chocoensis	
Magnoliales	Annonaceae	Clusia multiflora	
	Clusiaceae		Cronizo
		Tovomita parviflora	Granizo
		Chrysochlamys membranacea	
		Chrysochlamys floribunda	
		Clusia magnifolia	0
		Clusia sp1	Copé
		Clusia sp2	
		Clusia sp3	
		Clusia ellipticifolia	
Malpighiales	Euphorbiaceae	Alchornea grandis	
		Alchornea sp1	
		Alchornea sp2	
		Hieronyma duquei	
		Alchornea coelophylla	Palma boba
		Alchornea latifolia	
		Alchornea grandiflora	
		Alchornea glandulosa	
		Hieronyma macrocarpa	
		Euphorbiaceae sp1	
	Hypericaceae	Hypericum myricarifolium	Hiperico
	Passifloraceae	Passiflora crispolanata	Pasiflora
	Salicaceae	Casearia quinduensis	
		Banara guianensis	Copé
		Salicaceae sp2	
		Salicaceae sp1	
Myrtales	Combretaceae	Buchenavia tetraphylla	
	Melastomataceae	Clidemia sp1	
		Tibouchina mollis	
		Axinaea sp	
		Miconia jahnii	Tuno amarillo

ORDEN	FAMILIA	NOMBRE CIENTÍFICO	NOMBRE COMÚN
ONDEN	TAMILIA	Miconia puracensis	Nigüito
		Miconia latifolia	kullka
		Tibouchina grossa	Siete cueros
		Miconia gleasoniana	Cioto duci ed
		Miconia subvelutina	
		Axinaea macrophylla	
		Miconia lehmannii	
		Meriania silverstonei	Pepito de montaña
		Miconia brachygyna	Uvito
		Miconia glaberrima	CVIIO
		Miconia floribunda	
		Meriania quintuplinervis	Cordoncillo
		Clidemia sp1	Cordoncillo
		Meriania yalconensis	
		Miconia reducens	
		Miconia sp1	
		Miconia sp2	
		Miconia sp3	
		Melastomataceae sp2 Miconia wurdackii	
		Miconia ligustrina	
		Melastomataceae sp1	l h iita
		Miconia stipularis	Uvito
		Blakea calyptratata	
		Blakea sp.	
		Blakea calyptratata	
		Blakea sp	
	Myrtaceae	Myrcia splendens	Canelo de monte
0 " 1 1	Onagraceae	Fuchsia polyantha	0 1 111
Oxalidales	Brunelliaceae	Brunellia macrophylla	Cedrillo, crespilla
		Brunellia propinqua	
		Brunellia littlei	
		Brunellia sp1	
		Brunellia sp3	
		Brunellia sp2	
		Brunellia putumayensis	
	Cunoniaceae	Weinmannia mariquitae	Balbisiana
		Weinmannia pubescens	Encenillo
		Weinmannia fagaroides	
		Weinmannia tomentosa	
		Weinmannia multijuga	Ensenillo
		Weinmannia heterophylla	
		Weinmannia ovata	Encenillo
		Weinmannia rollottii	Encenillo
	Oxalidaceae	Oxalis medicaginea	Chulco
Pandanales	Cyclanthaceae	Sphaeradenia fosbergii	
	Lauraceae	Lauraceae sp1	
		Endlicheria oreocola	
		Ocotea sp2	Jigua
		Aiouea sp1	
	1	Endlicheria sp1	

ORDEN	FAMILIA	NOMBRE CIENTÍFICO	NOMBRE COMÚN
		Ocotea sp3	Jigua
		Lauraceae sp2	o.igua
		Ocotea sp4	Jigua
		Ocotea pautensis	o.igua
Piperales	Piperaceae	Peperomia galioides	
1 ipordioo	riporadoad	Peperomia jamesoniana	
		Piper begoniicolor	
		Peperomia hartwegiana	
		Piper obliquum	
Poales	Bromeliaceae	Pitcairnia exserta	Bromelia
1 04.00	Bromonaccac	Greigia mulfordii	Bronnona
		Greigia stenolepis	Piñiela
		Puya trianae	Piñiela
		Puya goudotiana	Piñiela
		Tillandsia biflora	Epífita
		Tillandsia compacta	Epífita
		Tillandsia complanata	Epífita
		Guzmania gloriosa	Epinta
		Guzmania squarrosa	
		Racinaea spiculosa	
		Tillandsia buseri	
	Cyperaceae	Carex bonplandii	
	Оурстаосас	Carex pygmaea	
	Juncaceae	Juncus brunneus	Junco
	Poaceae	Calamagrostis bogotensis	Paja
	1 000000	Calamagrostis effusa	Paja
		Calamagrostis planifolia	Paja
		Chusquea scandens	Chusque, bambú Andino
		Chusquea tessellata	Chusque, bambú Andino
		Neurolepis aperta	Chasque, Barriba / trialito
Podocarpales	Podocarpaceae	Podocarpus oleifolius	Pino Romerón
Proteales	Sabiaceae	Meliosma violacea	1 IIIO I COITICIOTI
Trotodios	Cablaccac	Meliosma cundinamarcensis	
		Meliosma boliviensis	
Ranunculales	Ranunculaceae	Ranunculus flagelliformis	
Rosales	Cecropiaceae	Cecropia telealba	
. 1000100	Urticaceae	Pilea fallax	
	Rosaceae	Hesperomeles obtusifolia	
	110000000	Rubus acanthophyllos	
		Prunus muris	
Sapindales	Sapindaceae	Billia rosea	
Santalales	Loranthaceae	Gaiadendron sp	
Saxifragales	Crassulaceae	Crassula peduncularis	
Solanales	Solanaceae	Cestrum parvifolium	
		Solanum caripense	
		Solanum sp	
		Cestrum sp	
		Brugmansia sanguinea	
		Schultesianthus odoriferus	
		Conditional India Odomordo	

Anexo 3. Listado de especies de Fauna presentes en el polígono propuesto para Cerro Banderas - Ojo Blanco

ORDEN	FAMILIA	ESPECIE	NOMBRE COMÙN
Anura	Bufonidae	Atelopus simulatus	Rana Arlequín
		Osornophryne bufoniformis	Sapo
		Osornophryne percrassa	Sapito de Páramo
		Rhinella nicefori	Sapo Picudo Colombiano
	Centrolenidae	Centrolene buckleyi	Rana de cristal gigante
		Centrolene paezorum	Rana de cristal gigante
		Nymphargus garciae	Rana de Cristal
		Nymphargus posadae	Rana de Cristal
	Hemiphractidae	Gastrotheca aeromaculata	Rana marsupial
		Gastrotheca nicefori	Rana marsupial
	Hylidae	Osteocephalus verruciger	Rana de Casco
		Hyloscirtus caucanus	Rana arborícola del Cauca
	Craugastoridae	Pristimantis hernandezi	Rana ladrona de Hernández
		Pristimantis petersi	Rana de Peters
		Pristimantis leptolophus	Rana Ladrona del Volcán
		Pristimantis racemus	Rana Ladrona de las Hermosas
		Pristimantis supernatis	Rana Ladrona del Carmelo
		Pristimantis tamsitti	Rana Ladrona de San Adolfo
		Pristimantis boulengeri	Rana De Las Bromelias
		Pristimantis vicarius	Rana Ladrona de Coconuco
		Pristimantis w-nigrum	Cualita
		Hypodactylus sp.	
		Pristimantis brevifrons	Rana de páramo
	Leptodactylidae	Leptodactylus colombiensis	Rana Colombiana
	Dendrobatidae	Rheobates palmatus	Rana
Gymnophiona	Caecilidae	Caecilia subdermalis	Cecilia, pudridora
Squamata	Sphaerodactylidae	Gonatodes albogularis	Salamanqueja
	Gekkonidae	Hemidactylus brookii	
	Gymnophtalmidae	Anadia rhombifera	Lagartija de rombos
		Cercosaura argulus	Lagartija Rayada
		Proctoporus striatus	Lisa Rayada
		Ptychoglossus bicolor	Lagartija de Werner
	Dactyloidae	Anolis heterodermus	Camaleón Andino, Anolis Andino
	Tropiduridae	Stenocercus trachycephalus	Lagarto collarejo
	Colubridae	Atractus nicefori	Serpiente tierrera
		Clelia clelia	Vibora de sangre, ratonera
		Chironius exoletus	Serpiente látigo
		Chironius monticola	Lomo de Machete, Fueteadora
		Dendrophidion bivittatus	corredora, ratonera
		Dendrophidion	corredora suramericana,
		percarinatus	ratonera
		Mastygodrias boddaerti	Cazadora sabanera

ORDEN	FAMILIA	ESPECIE	NOMBRE COMÙN
ORDEN	FAMILIA	Erythrolamprus	culebra de pantano,
		epinephelus	guardacamino
		Lampropeltis micropholis	guardacamino
		Atractus sp.	
	Viperidae	Crotalus durissus	Cascabel tropical
	Elapidae	Micrurus mipartitus	Serpiente de coral
Accipitriformes	Pandionidae	Pandion haliaetus	Aguila pescadora
Accipititionines	Accipitridae	Spizaetus isidori	Águila crestada
	7 toolpiti idae	Geranoaetus	Águila Paramuna
		melanoleucus	/ igana i aramana
		Buteo platypterus	Águila migratoria
		Parabuteo leucorrhous	Gavilán negro
		Rupornis magnirostris	Gavilán Caminero
Anseriformes	Anatidae	Merganetta armata	Pato de torrente
7 41001110111100	7 11 10 11 00 0	Oxyura jamaicensis	Pato Zambullidor
Apodiformes	Trochilidae	Coeligena torquata	Inca Acollarado
		Metallura tyrianthina	Metalura Colirrojo
		Heliangelus exortis	Heliángelus Belicoso
		Adelomya melanogenesisi	Colibrí Jaspeado
		Phaetornis stymatophorus	Ermitaño habano
		Adelomyia melanogenys	Colibri pechipunteado
		Amazilia cyanifrons	Amazilia
		Amazilia franciae	Amazilia andino
		Anthocephala floriceps	Colibri cabecicastaño
		Campylopterus falcatus	Ala de sable
		Chlorostilbon poortmani	Esmeralda rabicorta
		Colibri coruscans	Chillon común
		Colibri delphinae	Chillon pardo
		Colibri thalassinus	Chillon verde
		Eriocnemis aline	Paramero diminuto
		Eriocnemis vestita	Paramero esmeraldino
		Heliodoxa leadbeateri	Tomineja
		Heliodoxa rubinoides	Heliodoxa leonado
		Lafresnaya lafresnayi	Colibri cabecicastaño
		Lesbia nuna	Cometa coliverde
		Pterophanes cyanopterus	Alas de zafiro
		Urosticte ruficrissa	Colibri ventrirufo
Caprimulgiformes	Steatornithidae	Steatornis caripensis	Guacharo
	Caprimulgidae	Nyctibius albicollis	Gallina Ciega, Bujo
		Systellura longirostris	Guardacaminos Andino -
		Uropsalis segmentata	Guardacamino tijereta
		Uropsalis lyra	Guardacamino lyra
	Apodidae	Streptoprovne zonaris	Vencejo de collar
		Streptoprocne rutila	Vencejo cuellirrojo
Cathartiformes	Cathartidae	Coragyps atratus	Gallinazo común
		Cathartes aura	Guala de cabeza roja
		Sarcoramphus papa	Rey de los gallinazos
		Vultur gryphus	Cóndor de los Andes
Charadriiformes	Charadriidae	Vanellus chilensis	Pellar común
	Jacanidae	Jacana jacana	Gallito de Ciénaga
	Scolopacidae	Tringa flavipes	Andarríos patiamarillo

ORDEN	FAMILIA	ESPECIE	NOMBRE COMÙN
		Calidris bairdii	Correlimos patinegro
		Calidris melanotos	Correlimos pectoral
		Gallinago nobilis	Caica Paramuna
	Laridae	Phaetusa simplex	Gaviotin picudo
Columbiformes	Columbidae	Patagioenas cayennessis	Torcaza morada
		Patagioenas fasciata	Torcaza collareja
		Patagioenas subvinacea	Paloma Vinosa
		Columbina passerina	Tortolita pechiescamada
		Columbina talpacoti	Tortolita comun
		Leptotila conoveri	Caminera Tolimense
		Leptotila verreauxi	Caminera Rabiblanca
		Geotrygon montana	Paloma perdiz roja
		Zentrygon frenata	Paloma perdíz bigotuda
		Zenaida auriculata	Torcaza naguiblanca
Coraciiformes	Momotidae	Momotus aequatorialis	Barranquero Andino
		Momotus momota	Barranquero
Cuculiformes	Cuculidae	Coccyzus melacoryphus	Cuclillo de antifaz
• • • • • • • • • • • • • • • • • • • •		Piaya cayana	Cuco ardilla, Soledad café
		Crotophaga ani	Garrapatero
Falconiformes	Falconidae	Herpetotheres cachinnans	Halcón Guaco
1 alconilonnes	raiooriidae	Micrastur semitorquatus	Halcón collarejo
		Falco deiroleucus	Halcón colorado
		Falco peregrinus	Halcón peregrino
		Falco sparverius	Cernícalo
Galliformes	Gracidae	Penelope montagnii	Pava Andina
Gailloinics	Odontophoridae	Colinus cristatus	Perdíz común
	Cracidae	Ortalis motmot	Guacharaca variable
	Cradidae	Aburria aburri	Pava negra
		Chamaepetes goudotii	Pava Maraquera
Gruiformes	Rallidae	Aramides cajanea	Chilacoa colinegra
Grunormes	Namuae	Porphyirio martinicus	polla azul
Passeriformes	Cardinalidae		•
rassemonnes	Cardinalidae	Piranga rubriceps Cyanolyca armillata	Piranga cabeciroja Urraca de cuello negro
		Ampelion rubrocristatus	•
	Cotingidae		Cotinga Frutero
		Pipreola arcuata	
		Pyroderus scutatus	Toropisco
	Factor and state of	Rupicola peruvianus	Gallito de roca
	Emberizidae	Atlapetes albinucha	Gorrión
		Atlapetes flaviceps	Atlapetes de anteojos
		Atlapetes fuscoolivaceus	Gorrión
		Zonotrichia capensis	Copetón
	Formicariidae	Grallaricula nana	Tororoi enano
	Furnariidae	Pseudocolaptes boissonneautii	Trepamusgos Barbablanca Andino
		Hellmayrea gularis	Rastrojero cejiblanco
		Dendrocincla tyrannina	Trepatronco
		Synallaxis albescens	Rastrojero
		Synallaxis azarae	Rastrojero
		Syndactyla subalaris	Hojarasquero
		Xiphocolaptes	Trepatronco
		promeropirhynchus	Hopationio
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

ORDEN	FAMILIA	ESPECIE	NOMBRE COMÙN
ONDEN	Grallariidae	Grallaria alleni	Tororoi bigotudo
	Granariidae	Grallaria nuchalis	Tororoi chusquero
		Grallaria ruficapilla	Tororoi
		Grallaria rufocinerea	Cholongo
	Hirundinidae	Pygochelidon cyanoleuca	Golondrina azul y blanca
	Icteridae	Cacicus chrysuntus	Arrendajo de montaña
	Totoridae	Hypopyrrhus	Chango colombiano
		pyrohypogaster	Change colombiane
		Icterus chrysater	Turpial montañero
		Molothrus oryzivorus	Chamon gigante
	Mimidae	Mimus gilvus	Sinsonte
	Parulidae	Myioborus ornatus	Abanico Cariblanco
		Myiothlypis coronata	Reinita
	Passerellidae	Atlapetes leucopis	Atlapetes parduzco
	Thamnophilidae	Dysithamnus mentalis	Hormiguero
	· · · · · · · · · · · · · · · · · · ·	Thamnophilus	Batará
		multistriatus	244.4
	Thraupidae	Anisognathus lacrymosus	Tangara lacrimosa
		Iridosornis rufivertex	Tángara Coronidorada
		Dyglossa humeralis	Picaflor negro
		Butrhaupis montana	Azulejo Real
		Creugops verticalis	Hemispingo cabecinegro
		Chloronis riefferi	Tángara Lorito
		Buthraupis montana	Azulejo real
		Conirostrum albifrons	Mielero
		Dacnis hartlaubi	Dacnis turquesa
		Diglossa caerulescens	Diglosa
		Diglossa cyanea	Diglosa de antifaz
		Saltator cinctus	Gorrion collarejo
		Stilpnia vitriolina	Tangara
		Tachyphonus rufus	Parlotero
		Tangara labradorides	Tangara
		Thraupis episcopus	Azulejo común
		Thraupis palmarum	Azulejo palmero
		Tiaris olivaceus	Semillero
		Volatinia jacarina	Volatinero negro
	Tityridae	Pachyramphus polychopterus	Cabezon aliblanco
		Pachyramphus versicolor	Cabezón barreteado
	Troglodytidae	Cinnycerthia unirufa	Cucarachero rufo
	rrogiouytidae	Troglodytes aedon	Cucarachero
	Trogonidae	Trogon personatus	Trogón Enmascarado
	Turdidae	Turdus fuscater	Mirla común
	i di didae	Myadestes ralloides	Solitario
		Turdus ignobilis	Mirla
	Tyrannidae	Silvicultrix diadema	IVIIIIA
	i yrainiidae	Pseudotriccus ruficeps	Tiranuelo Encapuchado
		Elaenia flavogaster	Mosquerito
		Elaenia frantzii	Copetón
		Serpophaga cinerea	Atrapamoscas
		Tyrannus melancholicus	Tirano norteño
		i yrannus melancholicus	THATIO HUITEHU

ORDEN	FAMILIA	ESPECIE	NOMBRE COMÙN
OKBEN	Vireonidae	Vireo leucophrys	Verderon montañero
Pelecaniformes	Ardeidae	Bubulcus ibis	Garcita del Ganado
	7 11 40 1440	Egretta thula	Garza Patiamarilla
		Butorides striata	Garcita rayada
		Egretta caerulea	Garza azul
		Ardea alba	Garza blanca
Piciformes	Ramphastidae	Aulacorhynchus prasinus	Tucancito Esmeralda
rionomics	Capitonidae	Eubucco bourcierii	Torito cabecirrojo
	Picidae	Campephilus pollens	Carpintero gigante
	Picidae	Melanerpes formicivorus	Carpintero
	Ramphastidae	Andigena nigrirostris	Terlaque
Psittaciformes	Psittacidae	Hapalopsittaca amazonina	Cotorra montañera
		Leptosittaca branickii	Perico Paramuno
		Pionus sordidus	Cotorra piquirroja
		Pionus tumultuosus	Cotorra carateja
		Pionus chalcopterus	Cortorra maicera
		Ognorhynchus icterotis	Perico Palmero, Loro orejiamarillo
		Amazona mercenaria	Lora Andina
Strigiformes	Tytonidae	Tyto alba	Lechuza de campanario
	Strigidae	Megascops choliba	Currucutú común
	Ü	Megascops albogularis	Currucutú gorgiblanco
		Bubo virginianus	Búho real
		Ciccaba albitarsis	Búho Ocelado
		Ciccaba virgata	Búho moteado
		Asio stygius	Búho orejudo
Struthioniformes	Tinamidae	Tinamus osgoodi	Tinamú negro
		Nothocercus julius	
Didelphimrphia	Caluromyidae	Caluromys derbianus	Chucha rata
	Didelphidae	Didelphis pernigra	Chucha
		Didelphis marsupialis	Chucha
Paucituberculata	Caenolestidae	Caenolestes fuliginosus	Runcho
Pilosa	Megalonychidae	Choloepus hoffmanni	Perezoso de dos dedos
Cingulata	Dasypodidae	Dasypus novemcinctus	Armadillo
	Dasypodidae	Cabassous centralis	Armadillo
Soricomorpha	Soricidae	Cryptotis thomasi	Musaraña
Chiroptera	Phyllostomidae	Anoura caudifer	Murcielago trompudo
		Anoura cultrata	Murcielago trompudo
		Anoura geoffroyi	Murcielago trompudo
		Sturnira bidens	Murciélago frugívoro
		Stturnira aratathomasi	Murciélago frugívoro
		Sturnira Iudovici	Murciélago frugívoro
		Sturnira erythromos	Murciélago frugívoro
		Carollia brevicauda	Murciélago frutero
		Carollia perspicillata	Murciélago frutero
		Artibeus lituratus	Murciélago frutero
		Desmodus rotundus	Vampiro comun
	Vespertilionidae	Eptesicus andinus	murciélago perro
		Histiotus montanus	murciélago orejón
		Lasiurus cinereus	Murciélago

ORDEN	FAMILIA	ESPECIE	NOMBRE COMÙN
		Myotis keaysi	Murciélago
		Myotis nigricans	Murciélago
		Rhogeessa io	Murcielago enano
	Molossidae	Nyctinomops macrotis	Murcielago mastín
		Tadarida brasiliensis	Mastín migratorio
Primates	Cebidae	Aotus cf griseimembra	Mono lechuza
		Sapajus apella	Mico maicero
	Atelidae	Alouatta seniculus	mono cotudo
		Lagothrix lagotricha	Churuco
Carnivora	Ursidae	Tremarctos ornatus	Oso de anteojos
	Canidae	Lycalopex culpaeus	Lobo
		Cerdocyon thous	Zorro
		Urocyon	Zorro gatuno
		cinereoargenteus	-
	Procyonidae	Potos flavus	Perro de monte
		Nasuella olivacea	Guache
		Nasua nasua	Cusumbo
	Mustelidae	Mustela felipei	Comadreja
		Mustela frenata	Comadreja
		Eira barbara	Ulamá
	Felidae	Leopardus pardalis	Tigrillo
		Leopardus tigrinus	Gato montes
		Puma concolor	Puma
		Panthera onca	Tigre
Perissodactyla	Tapiridae	Tapirus pinchaque	Danta de páramo
Artiodactyla	Tayassuidae	Pecari tajacu	Saino
·		Tayassu pecari	Cafuche
	Cervidae	Pudu mephistophiles	Venado enano
		Mazama rufina	Soche de páramo
Rodentia	Sciuridae	Notosciurus pucheranii	Ardilla
		Notosciurus granatensis	Ardilla
	Muridae	Mus musculus	Raton
		Rattus rattus	Rata
		Rattus norvegicus	Rata
	Cricetidae	Microryzomys minutus	Raton campestre
		Reithrodontomys	Raton campestre
		mexicanus	
		Sigmodon hirsutus	Ratón sabanero
	Erethizontidae	Coendou rufescens	Puerco espín
	Dinomyidae	Dinomys branickii	Guagua loba
	Cuniculidae	Cuniculus taczanowski	Tinajo
Lagomorpha	Leporidae	Sylvilagus floridanus	Conejo sabanero